UNIT 5 VOCABULARY: DECIMAL NUMBERS

1.1. Decimal numbers

Decimal numbers are used in situations in which we look for more precision than whole numbers provide.
In order to do that, we define:

- A tenth: each part that we get when we divide something in ten equal parts. It is represented by $0.1=\frac{1}{10}$
- A hundredth: each part that we get when we divide something in a hundred equal parts. It is represented by $0.01=\frac{1}{100}$
- A thousandth: each part that we get when we divide something in a thousand equal parts. It is represented by $0.001=\frac{1}{1,000}$

One

Tenths

Hundredths

Thousandths

1.2. Place value

In the decimal number system, the value of a digit depends on where it is placed:

Adding extra zeros to the right of the last decimal digit does not change the value of the decimal number.
For example, $3.24=3.240=3.2400 \ldots$

1.3. How to read decimal numbers

Decimal numbers are read with each figure separate. We use a full stop (called "point"), not a comma, before the decimal places.

You can also read the full number after the decimal point and then say the word for the last place value.

Examples:
$2.34 \rightarrow$ two point three four or 2 point thirty-four hundredths.
$3.375 \rightarrow$ three point three seven five or three point three hundred and seventy-five thousandths.
$0.75 \rightarrow$ (nought or zero) point seven five or seventy-five hundredths.

Exercises.

1. Read the following numbers:
$120,000.321$
453.897
34.76
0.54
700,560
0.054
5,542.678987
8,275.4
2. Write with words the following numbers:
21.456
0.77
0.0089
5.7254

1.4. Converting fractions into decimals

In unit 4 we studied that every fraction can be expressed as a decimal number. To convert a fraction into a decimal, you just have to divide numerator by denominator.

The quotient of a fraction can be:

- Integers: no decimal part. For example, $\frac{6}{2}=3$
- Exact (or terminating) decimals: decimal numbers that end (or terminate).
For example, $\frac{3}{10}=0.3$ or $\frac{5}{4}=1.25$

- Repeating or recurring decimal numbers: decimal numbers that have a recurring pattern of a single or multiple digits.
For example, $\frac{1}{3}=0.333333 \ldots=0 . \hat{3} \quad \frac{2}{11}=0 . \widehat{18} \ldots \quad \frac{31}{12}=2.58 \hat{3}$
$\frac{1}{3}=0.333 \ldots=0 . \dot{3}=0 . \overline{3}$
Fraction Ways to show recurring decimals

1° ESO Bilingüe

Página 3

Exercise. Convert to a decimal:
a) $\frac{1}{4}$
b) $\frac{3}{20}$
c) $\frac{13}{5}$
d) $\frac{17}{6}$
e) $\frac{131}{11}$

1.5. Converting decimals into fractions

But decimals can be expressed as fractions. To convert an exact decimal into a fraction, you have to follow these steps:

- The numerator is formed by the digits without the decimal point.
- The denominator is the number formed by " 1 " and as many zeros as decimal figures the number has.
- Reduce, if possible.
For example, $\quad 2.75=\frac{275}{100}=\frac{11}{4}$
$0.6=\frac{6}{10}=\frac{3}{5}$
$3.002=\frac{3002}{1,000}=\frac{1501}{500}$

Exercise. Write these decimal numbers as fractions:
a) 0.4
b) 1.2
c) 0.045
d) 2.625

1.6. Representation of decimals on the Number Line

To represent a decimal on a number line, divide each segment of the number line into ten equal parts.
For example, to represent 8.4 on a numbe r line, divide the segment between 8 and 9 into ten equal parts.

Likewise, to represent 8.45 on a number line, divide the segment between 8.4 and 8.5 into ten equal parts.

Similarly, we can represent 8.456 on a number line by dividing the segment between 8.45 and 8.46 into ten equal parts.

Exercise. Write the decimal number that the arrow points at in the following diagrams:

2.1. Addition and subtraction of decimals

To add or subtract decimals, line up the decimal points and then follow the rules for
adding or subtracting whole numbers, placing the decimal point in the same column.
When one number has more decimal places
than another, use 0's to give them the same
number of decimal places.
For example, to add 528 and 7.49

- Line up the decimal points and add Os on the right | Line up the decimal points... |
| :--- |
| of the first number. |
| Then add. |

2.2. Multiplication of decimal numbers

Exercises. Work out:
a) $5.6 \cdot 6.9$
b) $12.37 \cdot 76.78$
c) $-4.66 \cdot 4.7$
d) $0.345 \cdot(32.4-4.67)$

3.1. Dividing whole numbers, with decimals

To get decimals in a division, continue the whole division adding zeros to the right of the	
number being divided until you get the amount of decimal digits required.	
For example, divide $235: 6$ until the hundredth:	235

Exercise. Calculate with two decimal digits:
a) $56 \div 7$
b) $7634 \div 34$
c) $-679: 32$
d) $9783: 127$

3.2. Dividing decimals by decimals

Exercise. Calculate with three decimal digits:
a) $56.7 \div 2.34$
b) $1432.3 \div 0.42$
c) $-12.34 \div 3.5$
d) $1 \div 1.2$

3.3. Order of operations

Once again!!
When you have several operations to do, which one do you calculate first?

We work out operations in this order:
Brackets
EXPONENTS (Powers, roots, etc)

DIVISION and MULTIPLICATION (working from left to right)
ADDITION and SUBTRACTION (working from left to right)
That makes BEDMAS!

4.1. Approximations

An approximation of a number is a representation of that number that is not exact, but still close enough to be useful.
Rounding off a decimal number to a given number of decimal places is the quickest way to approximate a number.

For example, if you want to round off 2,6525272 to three decimal places, you would:
Step 1: Mark off the required number of decimal places. $2,652 \mid 5272$
Step 2: Check the next digit to see if you must round up or round down. Remember: if the next digit is 5 or more, you must round up, and if it is 4 or less, you must round down. $2,652 \mid 5272$ must be rounded up.
Step 3: Write the final answer. 2,653 rounded to 3 decimal places.

REMEMBER!

When the digit $5,6,7,8$, or 9 appears in the ones place, round up; when the digit $0,1,2,3$, or 4 appears in the ones place, round down.

Exercises.

1. Round off these distances to the nearest 100 m (to one decimal place):
a) 5.768 km
b) 9.039 km
c) 8.48 km
d) 8.41 km
e) 17.685 km
f) 17.658 km
2. Round off:
a) 1.17 to the nearest tenth
b) 2.375 to the nearest hundredth
c) 0.7084 to the nearest thousandth
d) 12.87 to the nearest unit
e) 151.504 to the nearest hundred
f) 7478 to the nearest thousand
3. The height of each person has been rounded to the nearest 10 cm .

The actual heights of the six people are:
$1.44 \mathrm{~m} \quad 1.54 \mathrm{~m} \quad 1.61 \mathrm{~m} \quad 1.65 \mathrm{~m} \quad 1.84 \mathrm{~m} \quad 1.85 \mathrm{~m}$
Match each person with their actual height.

4.2. Word problems

1) Ellen earns 137.40 per week. After 4 weeks, she gets an extra payment of 24.75 . She spends 354.60 in this period. How much money does she save?

2) A student studies a total time of 4 h 35 min and during this time he writes 100 min. How long, in hours, does he study without writing?

3) Susan is cooking a cake and uses 1.35 kg of flour, 0.37 kg of sugar, 3 eggs that weigh 80 g each and 240 g of milk. What is the weight of the mixture?
4) I buy 7 kilograms of meat and pay $€ 53.55$. How much does the kilogram of meat cost?

5) Henry has $€ 83.40$. He buys four tickets for the cinema at $€ 6.50$ each and 2 bags of popcorn at $€ 2.25$ each. How much money has he got left?
6) A breeder gives to each pig 0.65 kg of food for every 4 kg of body weight. There are 4 pigs of $75.8 \mathrm{~kg}, 56.4 \mathrm{~kg}, 75.4 \mathrm{~kg}$ and 89.3 kg . How much food must be prepared in total?

7) In a restaurant, 7 friends are having a meal. The bill is $£ 173.6$ and each person contributes with $£ 25.50$. What tip does the waiter receive?

8) A company produces items that are sold for $£ 13.63$ each. The daily production is 1275 items and the cost of production is $£ 11,324.50$. What is the daily income for the company?

9) Fernando Alonso can travel at 167.33 mph in his McLaren Formula 1 car. How far can he go in 4 hours?

10) Ted was 88.53 cm tall when he was 3 years old. By the time he was 19, Ted had grown a further 85.92 cm . How tall was he when he was 19 ?

