Retos en la cartografía oficial a medio plazo desde el punto de vista de los estándares geospaciales

Joan Masó, CREAF

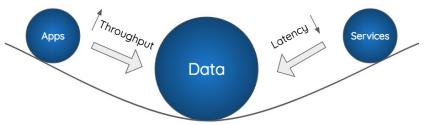
Estrategias del Plan Estadístico y Cartográfico 2021-2027

Fecha: 11 de diciembre

Lugar: IECA. Salón de actos.

Pabellón de Nueva Zelanda. C/ Leonardo Da Vinci, nº 21.

Isla de La Cartuja.


Índice

- Servicios geospaciales
- Tendencias
- Cambio y preservación
- El usuario proactivo

Reto 1: Cartography as a Service 👎 CREAF

- El acceso a los datos geoespaciales se puede realizar de dos maneras:
 - Descarga de los productos para un uso posterior
 - Servicios de información en internet que se usan cuando se necesitan
 - En la era del Big data la información tiene

y será demasiado pesada para plicarla de un sitio a otro; **plicaciones y servicios hacia ella** n coste en términos de:

- Hardware (propio o en la nube)
- Tiempo de computación
- Los retos son:
 - conseguir escalabilidad en la arquitectura
 - determinar quien paga por el coste del servicio

Reto 2: ¿Qué servicios?

- Difícil de predecir
- Esto obliga a la experimentación
 - El Betaportal del ICGC es un ejemplo
- Los retos son:
 - Permitir experimentación constante
 - Seleccionar los servicios necesarios
 - Garantizar una continuidad y estabilidad

Reto 3: Oficialidad o novedad

- El mérito de OGC ha sido definir una arquitectura de servicios geospaciales que resultaba novedosa y que al mismo tiempo es abierta y documentada en estándares
- INSPIRE recomienda el uso de geoservicios OGC como método de distribución de la información geoespacial
- Esta arquitectura se basa en el uso de:
 - protocolos web
 - procedimientos remotos (RPC)
 - codificaciones XML

Reto 3: Oficialidad o novedad

- La situación ha cambiado y **la innovación la dictan** las empresas que generan **servicios** sobre cartografía. Ejemplos:
 - API de recursos "">
 - Vector tiles
 - GeoJSON

- protocolos web
- recursos en la red (REST)
- codificaciones ligeras (JSON/YAML)
- Los retos son:
 - Mantener la tecnologías actuales basadas en servicios WMS, WFS, WCS...
 - Introducir nuevos servicios en base a recursos y nuevas codificaciones

Reto 4: Modularidad en las API

• El OGC está creando una nueva arquitectura en base a recursos y descrita en un documento OpenAPI:

— □ documento de capacidades

tCapabilities) es reemplazado por un cumento que describe las URIs de los ursos disponibles, los parámetros y la

, ∍nAPI está aceptado por la comunidad de desarrolladores web

erpretación de los verbos HTTP

• En OGC, el cambio debe producirse rápidamente pero sin errores debidos a la precipitación

 De hecho, ya existe un estándar aprobado: OGC API featur limita su uso a GeoJSON y WGS84

OGC API Hackathon 2019

OGC API -

Maps

Hosted and Sponsored by

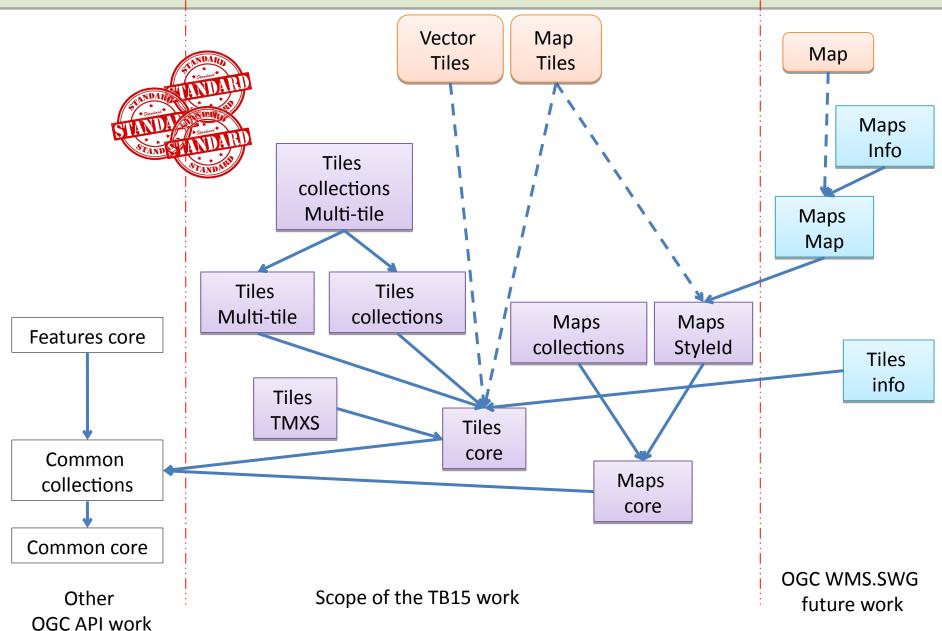
Tiles

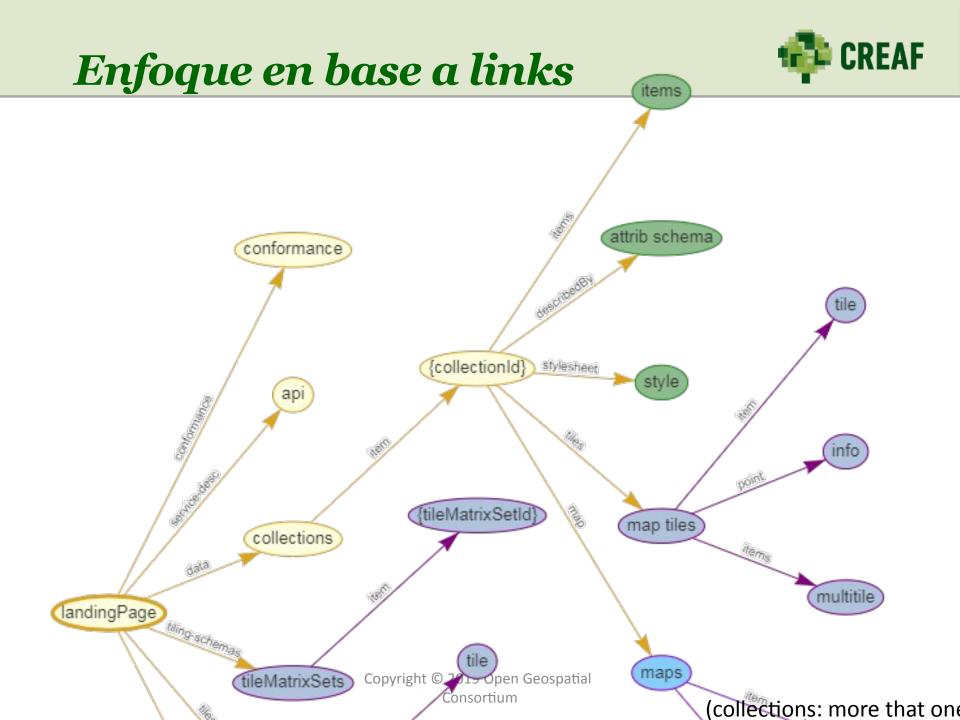
Coverages

Proceses

Reto 4: Modularidad en las API

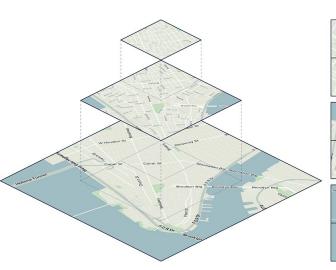
- El OGC estimula el uso de una arquitectura modular. Esta arquitectura divide la API en fragmentos (módulos o *building blocks*) que se pueden combinar de diversos modos permitiendo una gran flexibilidad
- Pero los módulos son elaborados por distintos equipos a velocidades diferentes
- Por ello entramos en un periodo de incertidumbre sobre el resultado final y cuando estará disponible
- Los retos son:
 - Cuando empezar la adopción de OpenAPI


```
- Aceptar una cierta dinámica de actualizaciones es Read Only
                                                                           -1/1.0.0#/components/responses
    Servers
                                                                           /ServerError
                                                                 '/collections/{collectionId}':
   Q Search
                                                          79 -
                                                                       - Capabilities
                                                          81
                                                          82 -
    Capabilities ^
                                                                      describe the feature collection with
                                                                         id `collectionId`
                                                                     operationId: describeCollection
           /conformance
                                                          85 -


    $ref: 'https://api.swaggerhub.com

           /collections
                                                                         /domains/cportele/ogcapi-features-1
                                                                         /1.0.0#/components/parameters
           /collections/{collectionId}
    GET
                                                                         /collectionId'
                                                                     responses:
    Data ^
                                                                        $ref: 'https://api.swaggerhub.com
           /collections/{collectionId}/items
    GET
                                                                           /domains/cportele/ogcapi-features
                                                                           -1/1.0.0#/components/responses
           /collections/{collectionId}/items/{featureId}
    GET
                                                                           /Collection'
```

¿Cuantos módulos?



Reto 5: Cartografía sin escala

• Los estándares de tiles nos indican el nino hacia productos sin escala (en lidad, con combinaciones de escalas)

amos preparados con ITS y 2DTileMatrixSet

los tiles convencionales en JPEG/P

Tiernos pasado a los vector tiles

• Los retos son:

- Una cartografía de base con múltiples resoluciones en un solo producto que se genere de manera automática y conecte los elementos a diversas escalas
- Adopción de nuevos estándares como vector tiles, 3D tiles

Reto 6: ¿Cual es el estándar que

debo seguir?

- Con una lista de 66 estándares
 OGC la pregunta es cada vez más difícil
- Con la aceptación de community standards en el OGC la situación se complica con más rapidez
- Reto:
 - Seccionar el coctel de estándares más útil para cada aplicación

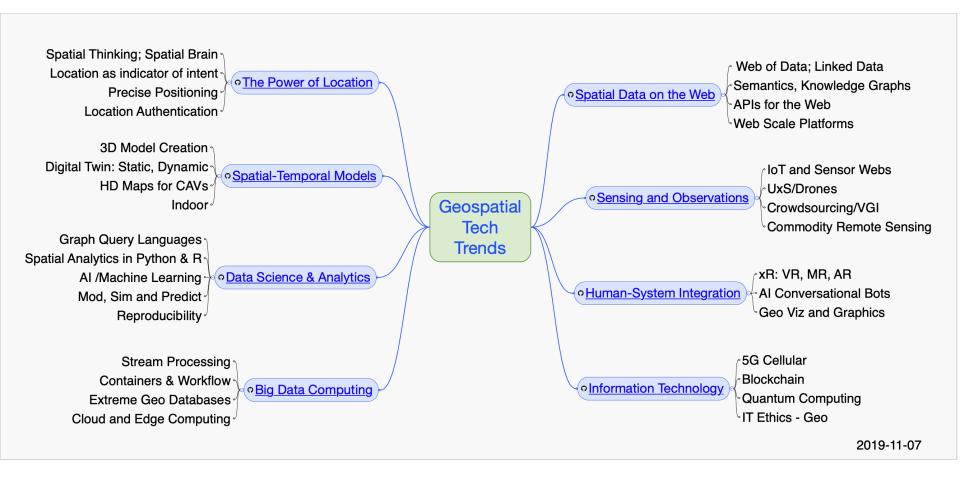
▼ OGC® Standards

- 3D Tiles
- 3dP
- ARML2.0
- Cat: ebRIM App Profile: Earth Observation Products
- Catalogue Service
- CDB
- CityGML
- Coordinate Transformation
- Filter Encoding
- GML in JPEG 2000
- GeoAPI
- GeoPackage
- GeoSciML
- GeoSPAROL
- Geography Markup Language
- GeoRSS
- Geospatial extensible Access Control Markup Language (GeoXACML)
- Geospatial User Feedback (GUF)
- GeoTiff
- GroundwaterML
- HDF5
- i3s
- IndoorGML
- KML
- LandInfra/InfraGML
- LAS
- Location Services (OpenLS)

Reto 7: Formatos

- Después de demostrarse:
 - la falta de penetración del formato GML
 - las limitaciones del formato shapefile
- Continuamos sin un formato vectorial universalmente aceptado
- El GeoPackage parece ganar adeptos porqué:
 - Funciona bien en el móvil
 - Es rápido y compacto
 - Nadie ha propuesto nada mejor

- Adoptar GeoPackage con sus limitaciones actuales
- Soportar sus constantes evoluciones



iQ ue m ás

Tendencias

OGC Tech Trends Analysis

Gemelos digitales y las ciudades

 Los gemelos digitales (digital twins) nos sirven como referencia para descubrir nuevos retos

 Una copia digital del mundo real con: Alto nivel de detalle Fusión GIS-CAD y 3D - Uso de sensores in-situ (y remotos) Modelización espacial Realidad virtual/aumentada - Fusión del mundo outdoor y el indoor

Reto 8: La cartografia y los

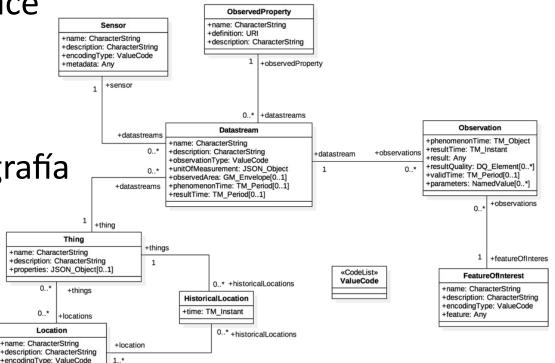
sensores

 La cartografía debe integrarse con las nuevas redes de sensores a tiempo real.

Location

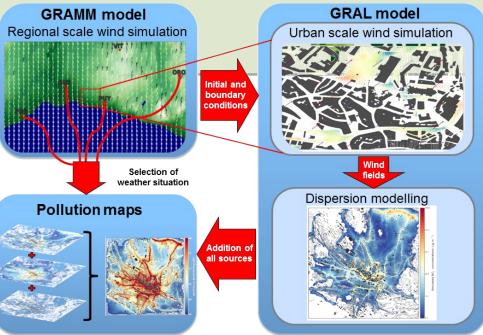
+location: Any

Estándares de sensores:


Sensor Obs. Service

SensorThings API

Reto


Integrar la cartografía

y los sensores

Reto 9: Modelización

- Los modelos de distribución 3D de contaminantes ayudan:
 - a determinar zonas sensibles
 - en actuaciones de planificación urbana
- CityGML como estándar de codificación urbana

- Los retos son:
 - Adaptar la cartografía a los requisitos de la modelización urbana
 - Asegurar la continuidad outdoor <-> indoor

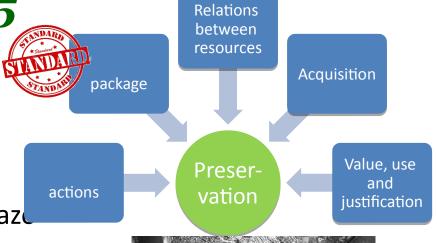
Reto 10: Cambio permanente y la historia

mecanismos de detección de bios y su digitalización permiten alizar la cartografía de manera stante y coordinada con los anismos de distribución de versiones anuales o multianuales

 La cartografía histórica nos permite ver la velocidad de la evolución del entorno, aprender de los errores del pasado y realizar previsiones de futuro

- Reto:
 - Combinar las actualizaciones constantes con mecanismos de preservación de la información

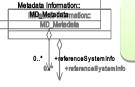
Reto 10: El estándar de


preservación ISO19165

 Aplica el estándar Open Archival Information System (OAIS) a la información geoespacial

 Adopta el concepto de paquete de información para un archivo a largo plazo

- Amplia el modelo de metadatos ISO19115 para incluir:
 - el contexto en que la información fue creada
 - la semántica de los conceptos utilizados
 - la estructura interna de los formatos
- Propone el uso de Open Packaging Conventions (OPC) ISO/IEC 29500-2


Reto 11: Los metadatos

Publication

 La dificultad de obtener resultados útiles en los grandes catálogos de cartografía nos resulta chocante en un mundo digital donde todo parece estar al

Process

Discovery ce de un clic

Ausencia de resultados relevantes, duplicaciones y redundancias...

Access

- Esta frustración puede hacernos dudar sobre la idoneidad de los procesos de captura de metadatos
 - Renunciar a los metadatos incrementará el problema

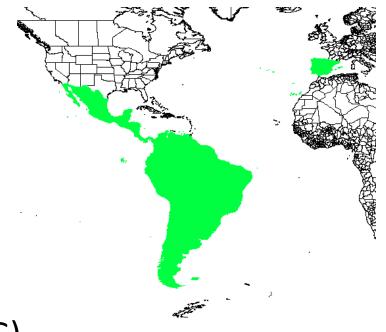
Los retos son:

- Interiorizar la necesidad de una buena captura de metadatos en todo el proceso productivo
- Automatizar la creación de metadatos
- Mejorar los metadatos también en los servicios
- Sacar provecho de otros sistema digitales cotidianos en el descubrimiento de productos geoespaciales

Reto 12: Utilizar el Crowd

- La ciencia ciudadana y el voluntariado geográfico (VGI) han demostrado ser útiles
 - P.ej. en respuesta a episodios de desastres en zonas poco cartografiadas

- El estándar para *Geospatial User Feedback* permite a los unions enriquecer la descripción de las capas con información sobre.
 - La idoneidad del uso de los datos para fines no inicialmente previstos
 - Inconsistencias o errores observador el elementos del mapa
 - Pistas para la interpretación de la información facilitada
- Los retos son:
 - Incluir VGI en la cartografía sin comprometer la calidad de los datos
 - Implementar mecanismos dinámicos de feedback en la producción



Foro Ibérico y latinoamericano del OGC

- Ámbito geográfico:
 - España + Portugal +Latinoamérica

- Coordinadores:
 - Joan Masó (CREAF)
 - Guadalupe Cano (IGN-CNIG)

https://external.opengeospatial.org/twiki_public/ILAFpublic/

12
retos
para
el
2020

Gracias

Joan.Maso@uab.cat

