

Business cycle indicators. Methods, applications, and limits.

Enrique M. Quilis

Macroeconomic Research Department

Ministry of Economy and Finance. Spain.

enrique.quilis@meh.es

Workshop on Leading Indicators

- Any views expressed herein are my own and not necessarily those of the Spanish Ministry of Economy and Finance.
- I owe Ana Abad and Juan Bógalo thanks for their help.

OVERVIEW

- General objective of a system of cyclical indicators.
- A methodological proposal.
- Case study: Stock Index as leading indicator of Industrial Production.

GENERAL OBJECTIVE What is the business cycle?

• Burns and Mitchell (1946):

Business cycles are a type of **fluctuation** found in the aggregate economic activity of nations that organize their work mainly in business enterprises: a cycle consists of **expansions** occurring at about the same time in **many economic activities**, followed by similarly general **recessions**, contractions, and revivals which merge into the expansion phase of the next cycle; in duration, business cycles **vary** from **more than one year to ten or twelve years**; they are not divisible into shorter cycles of similar characteristics with amplitudes approximating their own.

GENERAL OBJECTIVE Measuring the business cycle

- Amplitude: size of the fluctuations.
- Persistence: speed of mean-reversion.
- Diffusion: linkages across a vector of time series, static as well as dynamic.
- Others: asymmetry, specific role of turning points, second order turning points, etc. → full anatomy of the business cycle, see Camacho et al. (2005).

GENERAL OBJECTIVE

What is <u>not</u> business cycle measurement:

- Business cycle measurement is different from the measurement of the **levels** of economic activity according to a theoretical model (e.g., National Accounts).
- Business cycle measurement is not directly related to the quantification of the **growth** patterns of main economic aggregates (e.g., short-term economic activity indexes).
- Business cycle measurement is not **econometric** modeling (e.g., VAR or DSGE models).

GENERAL OBJECTIVE

What is <u>not</u> business cycle measurement:

- But... take it easy:
 - National Accounts may play a role in a system of cyclical indicators, although the overlap should be small if we want to design truly independent measurement devices.
 - Growth filters (rates of growth) have some common features with cyclical filters (e.g., detrending).
 - Econometric techniques, specially dynamic factor models and BVAR models, have a clear quantitative function in business cycle analysis.

GENERAL VIEW: Basic map

GENERAL RULES (Burns-Mitchell)

- Economic significance.
- Data quality.
- Timeliness.
- Cyclical stability.
- Small irregularity.
- Diversification of sources both across sectors (demand, supply, employment, etc.) and data suppliers.

GENERAL RULES

- Use all the available information, from all available sources, and using all the available sample (data, data, and more data).
- Monthly data rather than quarterly data. Weekly or daily frequency even better.
- Do not impose a priori classifactions. Use loose definitions. Business cycle measurement is empirical by nature.
- Financial-monetary indicators should play an important role, due to their forward-looking nature. But do not overstate them (not all the cycles are linked to them!!).
- Administrative information (e.g., from the Tax Agency): cheap, timely, complete, reliable, and exhaustive, see Frutos (2007).

Overall strategy: see Kaiser & Maravall (2005)

STEP 1: $Z_t = P_t + S_t + I_t$

 P_t : Trend-Cycle S_t : Seasonal I_t : Irregular

$$\hat{P}_{t} = V(B, F; \tilde{\phi}, \tilde{\theta})Z_{t}$$

ARIMA Model Based filtering (TRAMO-SEATS):

- Data-driven decomposition.
- Allows forecasts to be used for signal stabilization purposes (at the end of the sample).

STEP 2:
$$P_t = T_t + C_t$$

 P_t : Trend-Cycle T_t : Trend C_t : Cycle
 $\hat{C}_t = H(B,F;\phi)\hat{P}_t$

•Band-pass filter, H(B,F) :

- Select information contained in a pre-specfied band.
- Derived from a low-pass, tangent-type Butterworth filter.

CYCLICAL FILTERS

- Hodrick-Prescott (HP): implicit high-pass filter.
- Baxter-King: explicit band-pass filter, based on a moving average representation.
- Other: Christiano-Fitzgerald, Chebychev, etc.
- Our favorite filter: Butterworth:
 - Explicitly band-pass.
 - ARMA form: more parsimonious and simple than pure AR or MA filters.
 - Very flexible.
 - Include HP as a particular case.
 - Robust from input definition: applicable on trend-cycle signals or on seasonally adjusted data providing similar results.

Design of the band-pass filter

- Cyclical band: [w_{p1}, w_{p2}] (2-8 years)
- Rejection band: $[0, w_{s1}] \cup [w_{s2}, \pi]$

$$0 < W_{s1} < W_{p1} < W_{p2} < W_{s2} < \pi$$

- Set: $w_p = w_{p2} w_{p1}$; $w_s = w_{s2} w_{p1}$
- Set tolerances δ_1 and $\delta_2.$
- The band-pass filter is designed as a function of $\bm{w_p}$, $\bm{w_s}$, δ_1 and $\delta_2 \clubsuit \phi$ parameters.

Design of the band-pass filter: φ

- Cyclical band: $[0.060\pi, 0.240\pi]$ (2-8 years)
- Rejection band:
- $\delta_1 = 0.10$
- $\delta_2 = 0.01$
- d = 5

 $\begin{array}{l} [0.060\pi\,,\,0.240\pi\,] & (2\text{-}8 \text{ years}) \\ [0\,,\,0.034\pi\,] \cup [0.420\pi\,,\,\pi\,] \end{array}$

Alternative filters

19

REFERENCE CYCLE

- Usually: an exogenous indicator provided by the analyst and/or by substantive considerations.
- It should accomplish the general rules of the basis indicators plus a general economic significance.
- The natural choice: monthly indexes of economic activity, designed using dynamic factor analysis techniques.
- Careful use of QNA data: the unavoidable combination of chain-linking, seasonal adjustment, temporal constraints, and cross-section constraints has important dynamic effects on their own, which do not enhance business cycle analysis, Abad et al. 2009). E.M. Ouilis

DATING

- Identification of turning points: special observations chaterized by the transition from an upward phase to an downward phase (peaks) or viceversa (troughs).
- May be done by means of empiricist, non-parametric methods (e.g. Bry-Boschan approach) → simple, robust, reasonable. Drawback: inference is almost impossible. Turning points are considered exogenous (a label).
- Model-based methods (e.g., MS-AR) are an interesting alternative than considers turning points as intrinsic features of the business cycle. Drawback: more complex procedures, not well suited to the filtered series provided by band-pass filters.

CYCLICAL CLASSIFICATION

- Check lead/coincident/lagged or acyclical patterns by means of:
 - Cross correlation function.
 - Delays among turning points.
 - Spectral methods: coherence and phase.
 - Transfer function models.

COMPOSITION

- Synthetic indexes can be built by means of:
 - Factor analysis.
 - Weigths proportional to correlation with the reference series.
 - Regression analysis.

APPLICATION

- Reference series: Spanish Index of Industrial Production (IIP_t) .
- Indicator: Madrid Stock Exchange General Index (*Stock_t*).
- Sample: 1965.01 2009.06

APPLICATION: Software

- Seasonal adjustment: TRAMO-SEATS (TSW).
- Cycle estimation: MATLAB.
- Turning points dating and classification: <F> and <G>.
- Cross-correlation analysis and spectral analysis: SCA.

IIP: First stage decomposition

IIP: Second stage decomposition

IIP: Alternative cycle estimation

IIP and STOCK (standardized)

IIP and STOCK: CCF

- STOCK is weakly procyclical with respect to IIP.
- STOCK leads 5 months IIP.

IIP: Turning points

DATING FINAL	G OF THE SE TURNING PO	RIES> IIP INTS	Spain		
OBS.	DATE	ТҮРЕ	CS		
16 39 56 75 109 129 209 224 260 299 311 323 341 361 380 398 409 425 485 517	1966. 4 1968. 3 1969. 8 1971. 3 1974. 1 1975. 9 1980.10 1982. 5 1983. 8 1986. 8 1986. 8 1989.11 1990.11 1991.11 1993. 5 1995. 1 1995. 1 1996. 8 1998. 2 1998. 2 1999. 1 2000. 5 2005. 5 2008. 1	$ \begin{array}{c} 1\\ -1\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -$	8.0600 -5.0300 0.6700 -5.4500 7.4100 -5.7000 1.4800 -0.0100 1.5900 -2.2300 3.4000 1.1700 3.2200 -6.2600 3.3500 -3.5700 1.4600 0.1700 3.7500 -3.7400 7.9800		
Final number of peaks = 11 Final number of troughs = 10 Time interval> 1965.01 - 2009.06 Number of observations> 534					

IIP: Turning points

ANALYSIS OF THE DATING OF ---> IIP Spain

DATE			DURATION AMPLITUDE		STRENGTH		ASYMMETRY			
PEAK	TROUGH	PEAK	TROUGH	CYCLE	PEAK	TROUGH	PEAK	TROUGH	DURATION	AMPLITUDE
1966.04 1969.08 1974.01 1980.10 1983.08 1989.11 1991.11 1995.01 1998.02 2000.05 2008.01	1968.03 1971.03 1975.09 1982.05 1986.08 1990.11 1993.05 1996.08 1999.01 2005.05	17.00 34.00 61.00 15.00 39.00 12.00 20.00 18.00 16.00 32.00	23.00 19.00 20.00 19.00 36.00 12.00 18.00 19.00 11.00 60.00	36.00 54.00 80.00 51.00 51.00 30.00 39.00 29.00 76.00	5.70 12.86 7.18 1.60 5.63 2.05 9.61 5.03 3.58 11.72	13.09 6.12 13.11 1.49 3.82 2.23 9.48 6.92 1.29 7.49	0.34 0.38 0.12 0.11 0.14 0.17 0.48 0.28 0.22 0.37	0.57 0.32 0.66 0.08 0.11 0.19 0.53 0.36 0.12 0.12	0.89 1.70 3.21 0.42 3.25 0.67 1.05 1.64 0.27	0.93 0.98 4.82 0.42 2.52 0.22 1.39 3.90 0.48
Number of peaks > 11 Number of troughs > 10 Total number of turning points > 21										
Smoothness index> 0.9545										
Time interval> 1965.01 - 2009.06 Number of observations> 534										

IIP: Deepest cycles

STOCK: Turning points

DATING FINAL	OF THE SE TURNING PO	ERIES> Sto DINTS	ock Index			
OBS.	DATE	TYPE	CS			
37 58 78 109 125 137 155 171 181 246 266 282 294 309 321 334 349 379 401 411 424 457 511 530	1968. 1 1969.10 1971. 6 1974. 1 1975. 5 1976. 5 1977.11 1979. 3 1980. 1 1981. 9 1985. 6 1987. 2 1988. 6 1987. 2 1988. 6 1989. 6 1989. 6 1990. 9 1991. 9 1992.10 1994. 1 1996. 7 1998. 5 1999. 3 2000. 4 2003. 1 2007. 7 2009. 2	$ \begin{array}{c} -1\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ $	-10.3600 19.6300 -18.0000 13.7300 -0.1000 6.8800 -20.5300 -1.2200 -7.7000 35.2700 -27.8400 19.5900 3.6500 9.0700 -8.7900 5.0500 -13.5900 20.4800 -18.3300 16.1700 9.8500 18.7300 -25.6100 27.9900 -29.8800			
Final number of peaks = 12 Final number of troughs = 13 Time interval> 1965.01 - 2009.06 Number of observations> 534						

STOCK: Turning points

ANALYSIS OF THE DATING OF ---> Stock Index

DAT	======= E		DURATION		AMPLI	TUDE	STRE	NGTH	ASYM	METRY
PEAK	TROUGH	PEAK	TROUGH	CYCLE	PEAK	TROUGH	PEAK	TROUGH	DURATION	AMPLITUDE
- 1969.10 1974.01 1976.05 1979.03 1981.09 1987.02 1989.06 1991.09 1994.01 1998.05 2000.04 2007.07	1968.01 1971.06 1975.05 1977.11 1980.01 1985.06 1988.06 1990.09 1992.10 1996.07 1999.03 2003.01 2009.02	21.00 31.00 12.00 16.00 20.00 20.00 12.00 12.00 12.00 15.00 22.00 13.00 54.00	20.00 16.00 18.00 10.00 45.00 16.00 15.00 13.00 30.00 10.00 33.00 19.00	41.00 47.00 30.00 26.00 65.00 36.00 27.00 25.00 45.00 32.00 46.00 73.00	29.99 31.73 6.98 19.31 42.97 47.43 5.42 13.84 34.07 34.50 8.88 53.60	37.63 13.83 27.41 6.48 63.11 15.94 17.86 18.64 38.81 6.32 44.34 57.87	1.43 1.02 0.58 1.21 2.15 2.37 0.45 1.15 2.27 1.57 0.68 0.99	1.88 0.86 1.52 0.65 1.40 1.00 1.19 1.43 1.29 0.63 1.34 3.05	1.05 1.94 0.67 1.60 0.44 1.25 0.80 0.92 0.50 2.20 0.39 2.84	0.80 2.29 0.25 2.98 0.68 2.98 0.30 0.74 0.88 5.46 0.20 0.93
MEDI	AN	18.00	17.00	38.50	30.86	23.02	1.18	1.32	0.99	0.84
Number of peaks> 12 Number of troughs> 13 Total number of turning points> 25										
Smoothness index> 0.9259										
Time interval> 1965.01 - 2009.06 Number of observations> 534										

FINAL PEAKS AND THEIR DE * MEANS NO C	OF IIP Sp LAYS IN F CORRESPOND	Dain RELATION TO Stock Index DENCE			
1966. 4 1969. 8 1974. 1 1980.10 1983. 8 1989.11 1991.11 1995. 1 1998. 2 2000. 5 2008. 1	* 0 11 * -5 -2 -12 3 -1 -6	1969.10 1974. 1 1981. 9 1989. 6 1991. 9 1994. 1 1998. 5 2000. 4 2007. 7			
FINAL TROUGHS OF IIP Spain AND THEIR DELAYS IN RELATION TO Stock Index * MEANS NO CORRESPONDENCE					
1968. 3 1971. 3 1975. 9 1982. 5 1986. 8 1990.11 1993. 5 1996. 8 1999. 1 2005. 5	-2 3 -4 -28 -14 -2 -7 -1 2 -28	1968. 1 1971. 6 1975. 5 1980. 1 1985. 6 1990. 9 1992.10 1996. 7 1999. 3 2003. 1			
CONFORMITY RATIOS: Referece series> 0.9048 Classified series> 0.7600 MEDIAN DELAY> -2 0					

IIP and STOCK: TURNING POINTS

- STOCK leads consistently IIP, median lead = 2 months.
- The lead is higher at troughs than at peaks: 1m vs 3m.
- The leads have noticeable variability, specially in the case of troughs.

IIP and STOCK: spectral analysis Window carpentry

IIP and STOCK: spectral analysis Coherence

E.M. Quilis

IIP and STOCK: spectral analysis Phase

E.M. Quilis

50

IIP and STOCK: SPECTRAL ANALYSIS

- STOCK and IIP have weak coherence, specially at lower frequencies (longer cycles).
- STOCK leads consistently IIP across windows. The lead may be estimated next to 7m.
- Different quantitative measures across windows may are consistent with varying leads.

REFERENCES

- Abad, A., Cuevas, A. & Quilis, E.M.: "Índices trimestrales de volumen encadenados, ajuste estacional y benchmarking", Instituto de Estudios Fiscales, Papeles de Trabajo n. 05.09.
- Camacho, M., Pérez-Quirós, G. & Saiz, L. (2005) "Do European business cycles look like one?", Bank of Spain, Working Paper n 0518.
- Frutos, R. (2007) "La estadística económica de base administrativa en España ¿Para cuándo el gran salto adelante?", en Marcos, C. (Ed.) *El papel de los registros administrativos en el análisis social y económico y el desarrollo del sistema estadístico*, Instituto de Estudios Fiscales.
- Kaiser, R. & Maravall, A. (2005) "Combining Filter Design with Modelbased Filtering: An Application to Business-cycle Estimation", *International Journal of Forecasting*, vol. 21, p. 691-710.
- Other available software: BUSY, Planas, C. & Fiorentini, G. (2003), JRC.

Thanks for your attention

Business cycle indicators. Methods, applications, and limits.

Enrique M. Quilis

Macroeconomic Research Department

Ministry of Economy and Finance. Spain.

enrique.quilis@meh.es