Demarcación Hidrográfica del Tinto, Odiel y Piedras

Revisión de tercer ciclo (2021-2027)

PLAN HIDROLÓGICO

(Documento para consulta pública)

APÉNDICE 2
FICHAS DE
CARACTERIZACIÓN
ADICIONAL DE LAS MASAS DE
AGUA SUBTERRÂNEA

ÍNDICE

APÉNDICE 2.1. MASAS DE AGUA SUBTERRÁNEA IDENTIFICADAS EN RIESGO DE NO ALCANZAI
LOS OBEJTIVOS MEDIOAMBIENTALES
ES064MSBT000305930 NIEBLA
ES064MSBT000305940 LEPE-CARTAYA49
ES064MSBT000305950 CONDADO
APÉNDICE 2.2. MASAS DE AGUA SUBTERRÁNEA SIN RIESGO
ES064MSBT004400010 ARACENA

APÉNDICE 2.1 MASAS DE AGUA SUBTERRÁNEA IDENTIFICADAS EN RIESGO DE NO ALCANZAR LOS OBJETIVOS MEDIOAMBIENTALES

1 ES064MSBT000305930 NIEBLA

1.1 INFORMACIÓN SOBRE LA MASA DE AGUA

UBICACIÓN	POBLACIÓN ASENTADA (N° HAB.)	MARCO GEOGRÁFICO (HIDROGRAFÍA)
Se sitúa en el extremo suroriental de la provincia de Huelva, limitando al sur con las localidades de Lucena del Puerto, Bonares y Villalba del Alcor. Al norte el límite se define desde el nacimiento del Río Corumbel, al este, hasta el embalse del Candoncillo, al oeste. El cauce del río Candón actúa de límite occidental hasta su confluencia con el río Tinto (Figura nº1)	202.198	Río principal: Tinto

Tabla nº 1. Información sobre la masa de agua de Niebla

1.2 LOCALIZACIÓN GEOGRÁFICA Y ÁMBITO ADMINISTRATIVO

ÁMBITO ADMINISTRATIVO	LOCALIZACIÓN
Comunidad Autónoma	Andalucía
Distrito	Atlántico
Provincia	Huelva

Tabla nº 2. Localización geográfica de la masa de agua de Niebla

1.2.1 TOPOGRAFÍA Y COORDENADAS DEL CENTROIDE

TOPOGRAFÍA					
Coordenadas del centroide (HUSO 30N)		Geometría		Altitud (m.s.n.m.)	
U.T.M. X (m)	U.T.M. Y (m)	Perímetro (km)	Superficie (km²)	Máxima	Mínima
166.681,9	4.141.741,1	269,86	530,08	211	0

Tabla nº 3. Topografía y coordenadas de la masa de agua Niebla

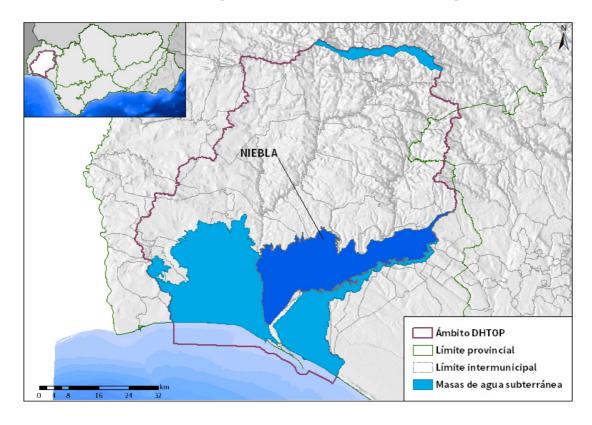


Figura nº1. Localización de la masa de agua Niebla

1.2.2 REGISTRO DE ZONAS PROTEGIDAS

Cádica FII ranga nyatasidas	Nombre	Tipo de	Coordenadas	Coordenadas	Código
Código EU zonas protegidas	Captación	captación	UTM X (m)	UTM Y (m)	SINAC1
ES064ZPROT6150020000002001153	Arroyo Sequillo	Pozo	159.808	4.145.400	1153
ES064ZPROT6150020000002016961	Pozo 3 La Palma	Pozo	185.858	4.145.916	16961

Tabla nº 4. Zonas protegidas para abastecimiento. Captaciones de aguas subterráneas

ZONAS VULNERABLES					
		Superficie de espacio vulnerable (km²)			
Nombre	Total	Parte incluida en la	Porcentaje de la		
	masa	masa	masa		
Zona 25 Niebla - Posadas	489,33	332	62,63		
Zona 23 Condado	207,8	15	2,83		
Zona 2 Valle del	8.620,40	<0.0001	<0,0001		
Guadalquivir	0.020,40	<0,0001	~0,0001		

Tabla nº 5. Zonas vulnerables a la contaminación por nitratos.

¹ Sistema de Información Nacional de Aguas de Consumo (SINAC). Ministerio de Sanidad, Consumo y Bienestar Social.

ZONAS PROTEGIDAS DE HÁBITAT O ESPECIES						
	Figure de		Superficie	de espacio prote	gido (km²)	
Nombre	protección	rotección Total		Parte incluida en la masa	Porcentaje de la masa	
Estuario del Río Tinto	ZEC		11,67	0,97	<1	
Marismas y Riberas del Tinto	ZEC	30,17		16,77	3,16	
Corredor Ecológico del Río Tinto	ZEC	218,34		11,30	2,13	
Marismas del Odiel	ZEPA	66,18		9,36	1,77	
Marismas del Odiel	LIC		66,18	9,36	1,77	
HUMEDALES						
			Superficie del humedal (km²)			
Nombr	e		Total	Parte incluida	Porcentaje de	
			Totat	en la masa	la masa	
Marismas del Odiel		66,306	9,59	1,810		
Laguna de Doña Elvira		0,025	0,025	<1		
Gravera de Balastrera			0,387	0,387	<1	
Marismas y Riberas del Río Tinto			30,167	16,77	3,164	
Laguna de los Caballos		0,012	<1	<1		

Tabla nº 6. Zonas de protección de hábitat o especies y humedales.

ZONAS SENSIBLES					
	Figure de	Superficie de espac	io protegido (km²)		
Nombre	Figura de protección	Parte incluida en la masa	Porcentaje de la masa		
Paraje Natural Marismas del Odiel	ESCA437	9,36	1,77		
Desembocadura del Río Tinto	ESCA440	1,04	0,20		

Tabla nº 7. Zonas sensibles.

1.2.3 POBLACIÓN ASENTADA

DATOS DEL PADRÓN REFERENTES AL NÚCLEO	POBLACIÓN ASENTADA DE DERECHO
DE:	2019
Beas	4.003
Beas / Niebla	25
Bonares	5.660
Gibraleón	11.747
Gibraleón / San Juan del Puerto	6
Huelva	144.013
Lucena del Puerto	269
Niebla	4.093
La Palmca del Condado	10.731
San Juan del Puerto	9.287
Trigueros	7.839
Villaba del Alcor	2.385
Villarrasa	2.140
TOTAL	202.198

Tabla nº 8. Población asentada sobre la masa de agua subterránea

1.3 CARACTERÍSTICAS INTRÍNSECAS

1.3.1 CARACTERÍSTICAS GEOLÓGICAS E HIDROLÓGICAS GENERALES

El nivel acuífero principal de esta masa está constituido por las calcarenitas, calizas, conglomerados y arenas del Mioceno. Estos materiales se adaptan a la geometría de los materiales paleozoicos sobre los que se asientan, por lo que se hunden progresivamente hacia el sur. Por encima se depositan las margas azules, de forma que constituyen un acuífero libre donde afloran las calcarenitas, calizas, conglomerados y arenas (en las zonas adyacentes al límite de la meseta) y hacia el sur pasan a constituir un acuífero confinado por las margas azules.

La recarga se produce por infiltración del agua de la lluvia y de la escorrentía superficial sobre los afloramientos impermeables del norte. Las salidas naturales se producían a través de manantiales y descargas a los ríos y arroyos en la parte libre del acuífero. El flujo del agua subterránea se realiza desde la parte libre del acuífero, al norte, hacia la zona confinada al sur (Figura n°2).

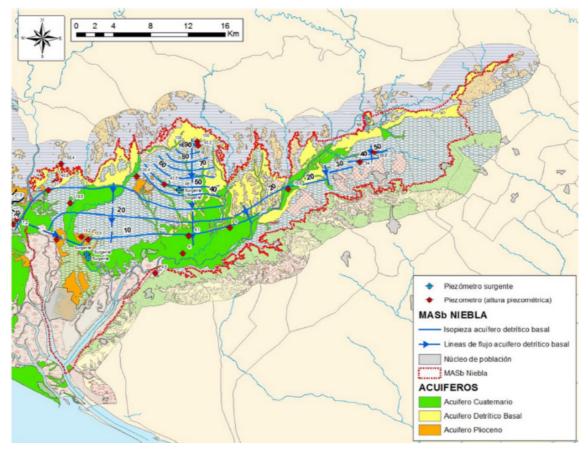


Figura n°2. Mapa de los tres acuíferos definidos en la masa de agua subterránea Niebla. Estudio de ampliación de la masa de agua. (CMAOT,2015b)

1.3.1.1 ÁMBITO GEOESTRUCTURAL

MARCO GEOLÓGICO			
UNIDADES GEOLÓGICAS DE RANGO MAYOR			
Depresiones Neógenas			
Origen	Fluvial		
Naturaleza Transgresivo marino			

Tabla nº 9. Unidades geológicas la masa de agua subterránea

1.3.1.2 DESCRIPCIÓN GEOLÓGICA

La masa de agua Niebla se encuentra en el límite entre la Depresión del Guadalquivir y la Meseta Paleozoica. De los materiales presentes en la superficie de la masa de agua, solamente el Mioceno de base, posee características apropiadas como acuífero. Los materiales paleozóicos y las margas azules son prácticamente impermeables y constituyen los límites inferior y superior respectivamente del acuífero mioceno. La formación limo-arenosa miocena posee una importante cuenca de recepción, pero su textura con intercalaciones margosas, hace que sea un acuífero de poca importancia, dado que de 61 sólo se podrían extraer caudales pequeños. Lo mismo ocurre con las terrazas aluviales cuaternarias.

La masa de agua subterránea de Niebla tiene continuidad hidrogeológica con la masa de agua subterránea de Campo de Tejada, en la demarcación hidrográfica del Guadalquivir (Figura n°3).

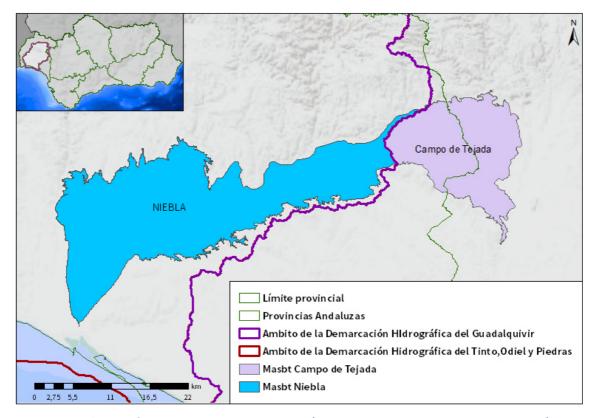


Figura nº3. Masas de aguas subterráneas compartidas con la Demarcación hidrográfica del Guadalquivir

1.3.1.3 COLUMNA LITOLÓGICA TIPO

ESTRATIGRAFÍA							
SÍNTESI	SÍNTESIS DE UNIDADES LITOESTRATIGRÁFICAS						
Litología	Extensión afloramiento (km²)	Potencia media estimada (m)	Edad				
Cuaternario indiferenciado	42,32	-	Cuaternario				
Conglomerados rojos, arenas y limos	17,6	-	Cuaternario				
Margas azules	91,88	-	Mioceno				
Calizas biogénicas	45,13	-	Mioceno				
Calizas estratificadas blancas	0,14	-	Triásico				
Limos arenosos amarillentos	1,34	-	Mioceno				

ESTRATIGRAFÍA					
SÍNTESIS DE UNIDADES LITOESTRATIGRÁFICAS					
Litología Extensión Potencia media Edad					
afloramiento (km²) estimada (m)					
Zócalo indiferenciado	13,94	_	Varios		

Tabla nº 10. Litología de la masa de agua subterránea

1.3.1.4 ESTRUCTURA

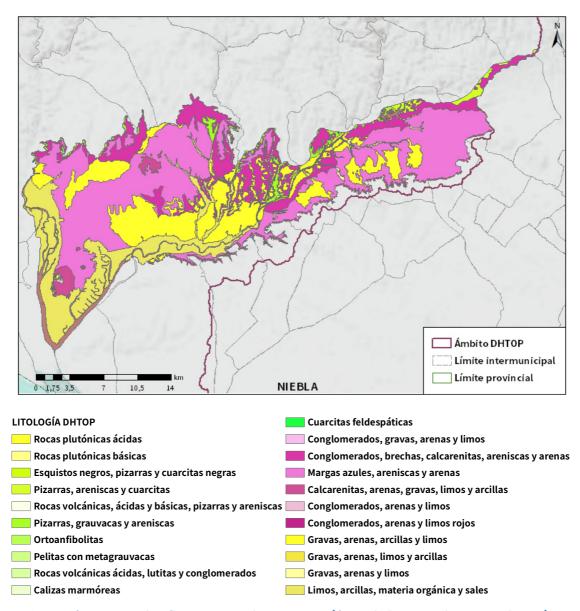


Figura nº4. Mapa de afloramientos litoestratigráficos de la masa de agua subterránea

1.3.1.5 TIPOLOGÍA HIDROLÓGICA GENERAL

DETRÍTICO	CARBONATADO	міхто	MIXTO Y OTROS	ACUÍFEROS LOCALES
		Х		

Tabla nº 11. Tipología de la masa de agua subterránea

1.3.1.6 LÍMITES HIDROLÓGICOS DE LA MASA DE AGUA SUBTERRÁNEA

ENCUADRE HIDROGEOLÓGICO								
	LÍMITES DE CONTORNO							
Límite	e Tipo Sentido del flujo Naturaleza							
Norte	Abierto	Entrada	Litológica					
Este	Abierto	Salida	Litológica					
Sur	Abierto	Salida	Administrativa					
Oeste	-	-	-					

Tabla nº 12. Límites hidrológicos de la masa de agua subterránea

1.3.1.7 ACUÍFEROS CONSTITUYENTES DE LA MASA DE AGUA SUBTERRÁNEA

ACUÍFEROS CONSTITUYENTES						
	DESCRIPCIÓN					
Denominación	Litología					
Mioceno de base	Carbonatado- detrítico	Calizas bioclásticas, conglomerados y arenas				
Cuaternario	Detrítico	Terrazas y aluviales				
Plioceno inferior	Detrítico	Limos arenosos				

Tabla nº 13. Acuíferos de la masa de agua subterránea

1.3.1.8 ESPESOR SATURADO DE LOS ACUÍFEROS CONSTITUYENTES DE LA MASA DE AGUA SUBTERRÁNEA

GEOMETRÍA								
Denominación	Superficie aflorante (km²)	Potencia estimada (m)	Disposición					
Mioceno de base	92,1	10 – 30	Tabular					
Cuaternario	114	-	-					
Plioceno inferior	19,4	-						

Tabla nº 14. Espesor saturado de los acuíferos de la masa de agua subterránea

1.3.1.9 CARACTERÍSTICAS HIDRÁULICAS

FU	FUNCIONAMIENTO						
Denominación	Comportamiento	Porosidad	Permeabilidad				
Margas azules	-	-	Ваја				
Calizas biogénicas, arenas y conglomerados	Libre y confinado	Karstificación	Muy alta				
Terrazas	-	-	Alta				
Conglomerados, gravas y arenas ferruginosas	Confinado	Intergranular	Muy alta				
Zócalo	-		Ваја				
Limos y arenas	Libre	Intergranular	Media				
Aluvial	Libre	Intergranular	Alta				
Limos arenosos amarillentos	Libre	Intergranular	Media				
Dolomías, calizas dolomíticas y margas	-	-	Alta				

Tabla nº 15. Características hidráulicas de la masa de agua subterránea

COEFICIENTE DE ALMACENAMIENTO							
Denominació	n	Valor	de coeficient	te de almacenamiento			
Denominacio	111	Rango	Valor medio	Método de determinación			
Mioceno de ba	ise	10-3 – 10-5	5,5*10-4	Ensayo de bombeo			

Tabla nº 16. Características de almacenamiento de la masa de agua

1.3.2 ZONA NO SATURADA

1.3.2.1 POTENCIA NO SATURADA

ZONA NO SATURADA							
ESPESOR							
Fecha	Valor	es (m.s.	n.m.)	Distrib	ución espacial		
reciia	Máximo	Medio	Mínimo	Intervalo (m)	Porcentaje de masa		
				-	-		
				-	-		
_	-	_	-	-	-		
				-	-		

Tabla nº 17. Potencia de la zona no saturada de la masa de agua subterránea

1.3.2.2 EDAFOLOGÍA

SUELOS					
Tipología	Espesor medio (cm)	Extensión (%)			
Cambisol cálcico	-	69,51			
Fluvisol calcáreo	-	11,51			
Regosol calcáreo	-	8,06			
Lluvisol cálcico	-	3,54			
Planosol eútrico	-	3,27			
Cambisol eútrico	-	2,04			
Regosol eútrico	-	1,94			
Arenosol álbico	-	0,13			

Tabla nº 18. Edafología de la masa de agua subterránea

1.3.2.3 VULNERABILIDAD A LA CONTAMINACIÓN

VULNERABILIDAD A LA CONTAMINACIÓN							
MÉTODO DRASTIC							
Clase Rango Superficie (km²) Extensión (%)							
Muy baja	1-2	24,48	11,70				
Ваја	3-4	98,13	46,92				
Moderada	5-6	60,48	28,92				
Alta	7-8	25,08	11,99				
Muy alta	9-10	0,98	0,47				

Tabla nº 19. Vulnerabilidad de la masa de agua subterránea

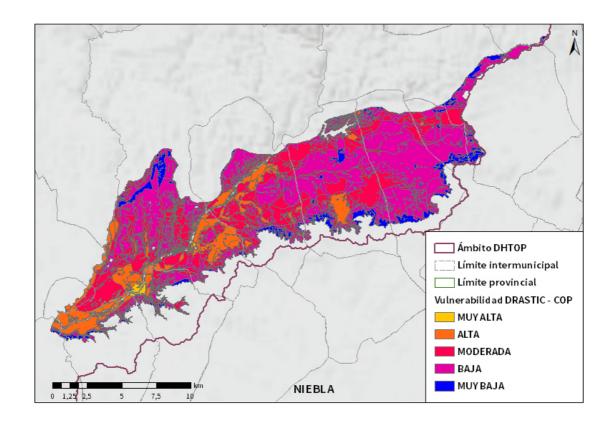
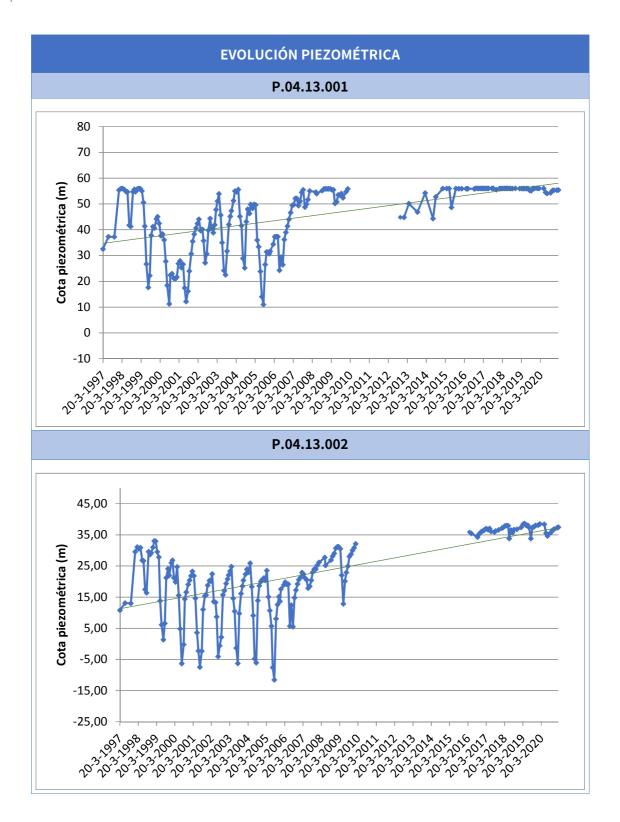


Tabla nº 20. Mapa parcial de vulnerabilidad de la masa de agua subterránea

1.3.3 PIEZOMETRÍA Y VARIACIÓN DEL ALMACENAMIENTO


1.3.3.1 PUNTOS DE CONTROL Y CLASIFICACIÓN PIEZOMÉTRICA

PIEZOMETRÍA									
	PUNTOS DE CONTROL PIEZOMÉTRICO								
Código punto	Cota (m)		nadas UTM m)	Clasificación	Código masa				
		Χ	Υ						
P.04.13.001	56	184.912	4.146.530	Acenso	ES064MSBT000305930				
P.04.13.002	67	183.291	4.145.495	Estabilidad	ES064MSBT000305930				
P.04.13.003	20	168.925	4.139.101	Descenso	ES064MSBT000305930				
P.04.13.004	26	175.480	4.142.962	Estabilidad	ES064MSBT000305930				

Tabla nº 21. Puntos de control piezométrico de la masa de agua subterránea y estado

1.3.3.2 GRÁFICAS DE EVOLUCIÓN PIEZOMÉTRICA

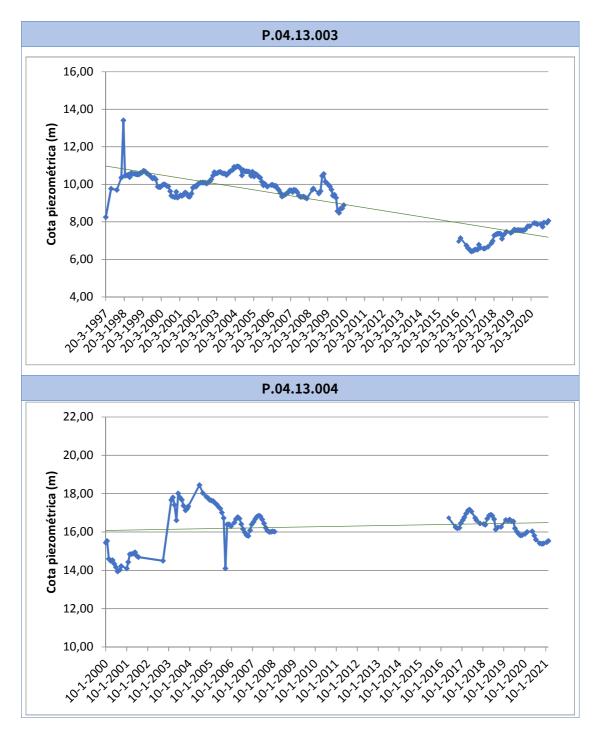


Figura n°5. Evolución piezométrica

Los datos piezométricos disponibles no permiten establecer de manera fiable una tendencia clara de la situación de la masa de agua subterránea ya que solo en uno de los piezómetros existentes se dispone de información representativa en el segundo ciclo de planificación (P.04.13.001), observándose que existe un aparente

equilibrio en los niveles piezométricos durante el segundo ciclo de planificación, pero no suficiente para valorar si esta situación se traduce de manera general a la totalidad de la masa de agua subterránea.

1.3.3.3 MAPA DE ISOPIEZAS Y PERMEABILIDADES

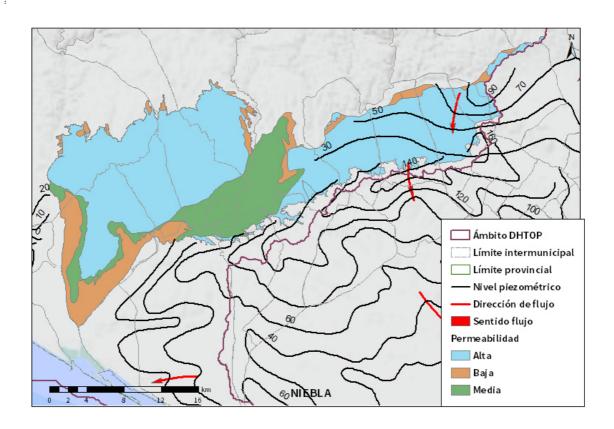


Figura nº6. Mapa de isopiezas y de permeabilidades de Andalucía (2006)

1.3.4 CONEXIÓN CON CURSOS DE AGUA Y ZONAS HÚMEDAS

1.3.4.1 DEPENDENCIA DE ECOSISTEMAS ACUÁTICOS

HUMEDALES	DEPENDENCIA DE TRAMOS FLUVIALES				
HUMEDALES	EN LA MASA	FUERA DE LA MASA			
NO	SI	NO			

Tabla nº 22. Dependencia con ecosistemas acuáticos en la masa de agua subterránea

TRAMOS FLUVIALES DEPENDIENTES						
Nombre de la masa	Categoría	Coeficiente de reparto				
Arroyo de Candón	Río	0,04				
Río Tinto	Río	0,4				
Arroyo de Giraldo	Río	0,28				
Arroyo de Fuentidueña	Río	0,14				
Río Corumbel	Río	0,06				

Tabla nº 23. Tramos fluviales asociados a la masa de agua

1.3.4.2 DESCRIPCIÓN Y OBSERVACIONES

MASAS DE AGUA SUPERFICIALES UBICADAS SOBRE LA MASA SUBTERRÁNEA						
Nombre de la masa	Categoría	Long. Total (km)	Long. Incluida en la masa (km)			
Arroyo de Giraldo	Río	14,40	14,40			
Arroyo de Fuentidueña	Río	1,65	1,65			
Río Odiel IV	Río	81,66	2,29			
Rivera de Nicoba	Río	34,52	28,49			
Arroyo de Candón	Río	31,49	11,92			
Arroyo del Helechoso	Río	13,17	1,01			
Río Corumbel	Río	30,61	3,31			
Río Tinto	Río	64,62	13,78			

HUMEDALES						
	Superficie del humedal (km²)					
Nombre	Total	Parte incluida	Porcentaje de			
	Total	en la masa	la masa			
Marismas del Odiel	66,306	9,59	1,810			
Laguna de Doña Elvira	0,025	0,025	0,005			
Gravera de Balastrera	0,387	0,387	0,073			
Marismas y Riberas del Tinto	30,167	16,77	3,164			
Laguna de los Caballos	0,012	0,01	0,002			

Tabla nº 24. Masas de agua en la superficie de la masa de agua subterránea

1.3.5 FLUJOS

1.3.5.1 RECARGA

Datos en hm³/año						
Acuífero	Infiltración por lluvia	Retornos procedentes de riego	Otras entradas	Recurso disponible		
Niebla	20,9	0,6	1,8	18,6		

Tabla nº 25. Recarga de la masa de agua subterránea

1.3.5.2 DESCARGA

La descarga se produce de forma natural hacia acuíferos contiguos mediante descargas laterales.

1.3.5.3 RECARGA ARTIFICIAL

No se realiza ningún tipo de recarga artificial en esta masa de agua

1.4 PRESIONES

1.4.1 EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS

1.4.1.1 EXTRACCIONES A PARTIR DEL ANÁLISIS DE USOS Y DEMANDAS

VOLUMEN ANUAL EXTRAÍDO						
Abastecimiento (hm³)	Agrícola (hm³)	Industrial (hm³)	Golf (hm³)	Ganadería (hm³)	Trasvase (hm³)	TOTAL (hm³)
0,17	13,42	0	0	0	0	13,58

Tabla nº 26. Extracciones en la masa de agua subterránea

1.4.2 OCUPACIÓN GENERAL DEL SUELO

1.4.2.1 DISTRIBUCIÓN SEGÚN EL SISTEMA DE INFORMACIÓN GEOGRÁFICA DE PARCELAS AGRÍCOLAS DE ANDALUCÍA (2019)

TIPO	SUPERFICIE (ha)	SUPERFICIE (%)
Tierra arable	29.146,08	54,98
Olivar	6.460,31	12,19
Improductivo	5.645,06	10,65
Zona Urbana	2.216,34	4,18
Corrientes y superficies de agua	2.142,30	4,04
Viales	1.445,73	2,73
Pasto arbustivo	1.353,52	2,55
Forestal	1.246,63	2,35
Pastizal	900,32	1,70
Frutal	669,08	1,26
Cítricos	581,18	1,10
Pasto arbolado	525,61	0,99
Frutal de cáscara	285,84	0,54
Viñedo	163,65	0,31

TIPO	SUPERFICIE (ha)	SUPERFICIE (%)
Invernaderos	109,18	0,21
Huerta	53,49	0,10
Edificaciones	23,67	0,04
Cítricos-frutal	17,81	0,03
Olivar-viñedo	12,45	0,02
Frutal-viñedo	4,52	0
Olivar-frutal	2,35	0
Olivar-cítricos	1,18	0
Elemento del paisaje	0,67	0
Cítricos-viñedo	0,25	0
Frutal de cáscara-viñedo	0,25	0
Frutal de cáscara-olivar	0,18	0
Frutal de cáscara-frutal	0,13	0

Nota: Los valores nulos de la columna de superficie son valores muy bajos casi nulos. La suma de la superficie en porcentaje no es 100 dada la falta de estos valores nulos

Tabla nº 27. Distribución de usos del suelo según el Sistema de Información Geográfica de Parcelas Agrícolas de Andalucía (SIGPAC 2019)

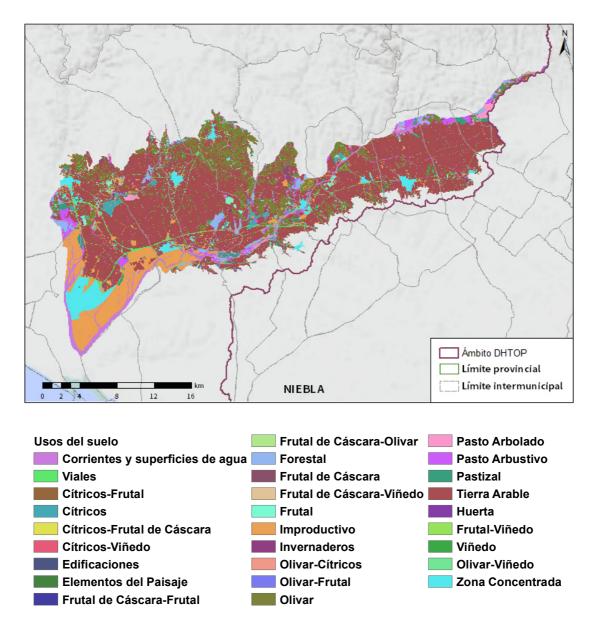


Figura nº7. Mapa de distribución de usos del suelo según el Sistema de Información Geográfica de Parcelas Agrícolas de Andalucía (SIGPAC 2019)

1.4.3 PRESIÓN PUNTUAL

		Valo	oración de la pres			
	Descripción	(nº de en	nplazamientos ei	n 10 km²)	Densida	
Tipo	de fuente puntual	Potencialment e muy importante	Potencialment e Importante	Potencialment e no importante	d	Valoración
1.1	Aguas residuales urbanas	>1	0,2 - 1	< 0,2	-	Sin presión
1.2	Aliviaderos	> 1	0,2 - 1	< 0,2	-	Sin presión
1.3	Plantas IED	>1	0,2 - 1	< 0,2	-	Sin presión
1.4	Plantas no IED	>1	0,2 - 1	< 0,2	-	Sin presión
1.5	Suelos contaminad os / Zonas industriales abandonada s	>1	0,2 - 1	< 0,2	-	Sin presión
1.6	Zonas para eliminación de residuos	> 0,5	0,1 - 0,5	< 0,1	-	Sin presión
1.7	Aguas de minería	>1	0,2 - 1	< 0,2	-	Sin presión
1.8	Acuicultura	> 1	0,2 - 1	< 0,2	-	Sin presión
1.9	Otras ²	> 2	0,5 - 2	< 0,5	0,6	Importante

Tabla nº 28. Presiones puntuales en la masa de agua subterránea

² En este caso la categoría "otras" hace referencia a la presencia de estaciones de servicio y balsas de alpechín sobre la masa de agua.

1.4.4 PRESIÓN DIFUSA

		Valo				
	Descripción	ipción (% de la superficie ocupada)		pada)	Densida	
Tipo	de fuente difusa	Potencialmen te muy importante	Potencialmen te Importante	Potencialmen te no importante	d	Valoración
2.1	Escorrentía urbana / alcantarillad o	> 10 %	2 – 10 %	< 2 %	6%	Importante
2.2	Agricultura	> 30 %	10 – 30 %	< 10 %	72,10%	Muy importante
2.3	Forestal	> 10 %	2 – 10 %	< 2 %	-	Sin presión
2.4	Transporte	> 2 %	1 – 2 %	< 1 %	2,57%	Muy importante
2.5	Suelos contaminad os / Zonas industriales abandonada s	> 2 %	1 - 2 %	< 1 %	-	Sin presión
2.6	Vertidos no conectados a la red de saneamiento	> 2 %	1 – 2 %	< 1 %	-	Sin presión
2.7	Deposición atmosférica	> 2 %	1 – 2 %	<1%	-	Sin presión
2.8	Minería	> 2 %	1 – 2 %	< 1 %	0,7%	No importante
2.9	Acuicultura	> 2 %	1 – 2 %	< 1 %	-	Sin presión

	Descrip			N(t/ai	ño)			
Tipo	ción de fuente difusa	Muy importa nte	Importante	Moderadam ente importante	Moder ada	No importante	Densidad	Valoración
2.10	Otras (ganad ería)	>150	75-150	50-75	25-50	<25	10,98	No importante

Tabla nº 29. Presiones difusas de la masa de agua subterránea

1.5 ESTADO E IMPACTOS

La actividad agrícola presente en la zona ha propiciado que esta masa de agua subterránea sea susceptible de sufrir contaminación por nitratos procedentes de fertilizantes y otros medios de producción agrarios. De acuerdo con las analíticas realizadas en esta masa de agua en los últimos cuatro años (2016-2019), se han alcanzado concentraciones máximas de nitratos de 145,5 mg/l en el año 2019, incumpliendo así el objetivo medioambiental de tener concentraciones inferiores a los 50 mg/l. Además, esta masa ha presentado igualmente una elevada presencia de concentración de cloruros con un máximo 480,5 mg/l que incumple los objetivos de 250 mg/l en las aguas subterráneas. Este aspecto parece condicionar la elevada conductividad registrada en la masa con un máximo de 4.680 μs/cm en el año 2019 que duplica el límite objetivo establecido de 2.500 μs/cm.

1.5.1 EVALUACIÓN DEL ESTADO CUANTITATIVO

VOLUMEN EXTRAÍDO (hm³/año)	RECURSOS DISPONIBLES (hm³/año)	ÍNDICE DE EXPLOTACIÓN ESTIMADO (%)	ESTADO CUANTITATIVO
13,58	18,6	73	Bueno

Tabla nº 30. Estado cuantitativo de la masa de agua subterránea

Un IE igual o superior a 80%, es indicativo de que las extracciones de agua suponen una presión importante para la masa de agua. Por encima de este valor se considera

que la masa de agua está en mal estado cuantitativo. En concreto en esta masa de agua se observa un índice de explotación del 73% lo que indica que los recursos extraídos son muy importantes en relación a la recarga del acuífero y deben de ser controlados y regulados.

1.5.2 EVALUACIÓN DEL ESTADO QUÍMICO

1.5.2.1 NORMAS DE CALIDAD Y VALORES UMBRAL

PARÁMETROS	NORMAS DE CALIDAD
Conductividad (in situ) (20°C)	2.500 μs/cm
Cloruros	250 mg/l
Nitratos	50 mg/l
Arsénico	10 μg/l
Fluoruros	1,5 mg/l

Tabla nº 31. Valores umbrales para contaminantes

1.5.2.2 RED DE CONTROL DE DIAGNÓSTICO

CÓDIGO	COORDENADA UTM X (m)	COORDENDA UTM Y (m)
AA00010022	186.615	4.146.029
AA00010023	175.624	4.140.065
AA00010032	164.346	4.149.632
AA00010036	160.871	4.144.223
AA00010062	174.915	4.141.748
AA00010063	165.987	4.136.580
AA00010087	181.363	4.143.289
AA00010088	177.301	4.143.987
AA00010102	182.732	4.146.286

CÓDIGO	COORDENADA UTM X (m)	COORDENDA UTM Y (m)
AA00010103	193.589	4.149.102
AA00010104	189.768	4.147.966
AA00010112	160.693	4.133.501
AA00010113	173.837	4.135.657
AA00010130	175.081	4.143.162
AA00010131	177.836	4.143.310
AA0TOP5052	159.645	4.145.450
AA0TOP5057	169.391	4.143.811

Tabla nº 32. Puntos de la red de control de calidad en la masa de agua subterránea

1.5.2.3 ESTADO QUÍMICO

Se ha comprobado que las sustancias activas de los plaguicidas, incluidos los metabolitos y los productos de degradación y reacción que sean pertinentes no superen el $0,1\,\mu\text{g/l}$ (referido a cada sustancia) y el $0,5\,\mu\text{g/l}$ (referido a la suma de todos los plaguicidas detectados y cuantificados en el procedimiento de seguimiento año 2018).

Los resultados obtenidos en cada punto de control (medias anuales 2019) han sido los siguientes (Tabla nº 33):

PLAN HIDROLÓGICO 2021-27 – APÉNDICE 2

PUNTO DE	CONDUCTIV		Cl (r	mg/l)	NO (mg/l)	As (μg/l)	F (n	ng/l)	Plaguicidas total (μg/l)	ESTADO
CONTROL	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	QUÍMICO
AA00010022	597	597	44	44	0,9	0,9	1,9	1,9	0,22	0,22	-	Bueno
AA00010023	4.680	4.880	480,5	515	14,2	17,3	1,98	2,91	1,50	1,86	0,05	Malo
AA00010032	745	751	36	44	65	76	0,56	0,61	0,11	0,13	0,05	Malo
AA00010036	-	-	-	-	-	-	-	-	-	-	-	-
AA00010062	1.720	1.735	44,15	60,5	51,15	75	-	-	-	-	0,06	Malo
AA00010063	622	638	56	65	0,9	0,9	-	-	-	-	0,06	Bueno
AA00010087	990	998	42,3	46,8	51	68	-	-	-	-	0,06	Malo
AA00010088	1.436	1.553	59	77	24,95	27,2	-	-	-	-	0,06	Bueno
AA00010102	-	-	-	-	-	-	-	-	-	-	-	-
AA00010103	2.850	3.010	300	342	145,5	150	-	-	-	-	0,05	Malo
AA00010104	1.756	1.810	190,5	238	94,3	157	-	-	-	-	0,05	Malo
AA00010130	839	840	34	47	55	56	-	-	-	-	0,05	Malo
AA00010131	-	-	-	-	-	-	-	-	-	-	-	-
AA0TOP5052	629	629	43,6	43,6	17,5	17,5	-	-	-	-	0,05	Bueno
AA0TOP5057	-	-	-	-	-	-	-	-	-	-	-	-
Media	1.53	3	12	0,9	4	7,2	1,1	197	0,4	188	0,05	
Máximo	4.88	0	5	15	1	57	2,	91	1,	86	0,056	

Nota: (Cl) cloruros; (NO) nitratos; (As) Arsénico; (F) Fluoruros

Tabla nº 33. Red calidad y diagnóstico

De las 11 estaciones de control de las que se disponen datos podemos observar como en 5 de ellas se han superado las normas de calidad referentes a la concentración de nitratos en la masa de agua lo que indica que esta masa soporta una contaminación ligada a este parámetro considerablemente importante y se puede considerar que se produce de manera generalizada en aquellas zonas del entono de las estaciones de control.

En lo que se refiere al contenido en cloruros se puede observar una correlación entre estos valores y la conductividad por lo que se puede deducir que los valores de conductividad se deben o están asociados en gran medida al contenido en cloruros de la masa de agua en el entorno de las estaciones de control AA00010023 y AA00010103.

1.5.3 ESTADO GLOBAL E IDENTIFICACIÓN DE IMPACTOS

ESTADO	ESTADO	ESTADO
CUANTITATIVO	QUÍMICO	FINAL
Bueno	Malo	

Tabla nº 34. Evaluación del estado de la masa de agua subterránea

TIPO	DEFINICIÓN	DESCRIPCIÓN	PRESENCIA DE IMPACTO
ACID	Acidificación	Variaciones del pH. Sale del rango del bueno.	
CHEM	Contaminación química	Masa de agua en mal estado químico.	X
ECOS	Afección a ecosistemas terrestres dependientes del agua subterránea	Diagnóstico reporting Directiva hábitats que evidencie este impacto.	
ННҮС	Alteraciones de hábitat por cambios hidrológicos	Diagnóstico hidromorfológico de la masa de agua que evidencia impacto.	
нмос	Alteraciones de hábitat por cambios morfológicos incluida la conectividad	Diagnóstico hidromorfológico de la masa de agua que evidencie impacto.	
INTR	Alteraciones de la dirección del flujo por intrusión salina	Concentración de cloruros/conductividad. Test de intrusión.	

TIPO	DEFINICIÓN	DESCRIPCIÓN	PRESENCIA DE IMPACTO	
LITT	Acumulación de basura reconocida en las	Diagnóstico seguimiento Estrategias		
	Estrategias Marinas	Marinas		
LOWT	Descenso piezométrico por extracción	Masa de agua en mal estado cuantitativo		
MICR	Contaminación microbiológica	Incumplimiento Directivas baño y agua		
MICK	Contaminación inicrobiológica	potable		
NUTR	Contaminación por nutrientes	Diagnóstico N y P en la masa de agua,	х	
NOTK	Contaminación por nuchentes	salen del rango del buen estado.		
ORGA	Contaminación orgánica	Condiciones de oxigenación, salen del		
ORGA	Contaminación diganica	rango del buen estado		
OTHE	Otro tipo de impacto significativo	Describir según el caso.		
	Disminución de la calidad del agua	Diagnóstico del estado de la masa de		
QUAL	superficial asociada por impacto químico	agua superficial afectada		
	o cuantitativo	agua superniciai aiectaua		
SALI	Intrusión o contaminación salina	Concentración de		
JALI		cloruros/conductividad.		
TEMP	Elevación de la temperatura	Medición de la temperatura. No más de 3		
ILIVIP	Lievacion de la temperatura	°C en la zona de mezcla		
UNKN	Desconocido	Describir según el caso.		

Tabla nº 35. Impactos identificados en la masa de agua

1.6 MEDIDAS

Atendiendo a la tipificación de Presiones e Impactos que se incluye en el Anexo 1 de la Guía de Reporting 2016 (Comisión Europea, 2014), se muestran a continuación las presiones significativas identificadas en esta masa de agua, así como los impactos relacionados (Tabla nº 36).

ESTIMACIÓN DE PRESIONES RESPONSABLES	IMPACTOS IDENTIFICADOS
2.2 Contaminación por fuentes difusas-Agraria	NUTR – Contaminación por nutrientes CHEM – Contaminación química

Tabla nº 36. Presiones significativas en la masa de agua subterránea

Por último, se recogen las medidas definidas frente a estas presiones (Tabla nº 37):

Título de la Medida

Control de las aplicaciones agrícolas de efluentes de almazara, lodos procedentes de Estaciones de Depuración de Aguas Residuales (EDAR) y residuos con código de valorización R10.

Mejora de la sostenibilidad ambiental de explotaciones agrarias (agroambiente y clima y producción ecológica): Apoyo a la implantación de las mejores técnicas disponibles (MTD) en las explotaciones agrícolas y ganaderas con objeto de reducir la generación de residuos:

Incentivos a las inversiones en medidas ambientales que supongan mejoras en la prevención y gestión.

Porcentaje mínimo de tierras de cultivo y cultivos permanentes dedicadas a superficies de interés ecológico.

Prohibición de quemas de rastrojos.

Servicios de asesoramiento a los agricultores.

Uso sostenible de fertilizantes.

Uso sostenible de fitosanitarios.

Uso sostenible del agua de riego y mejora de su calidad.

Tabla nº 37. Medidas frente a presiones significativas en la masa de agua subterránea

1.7 ANÁLISIS DE RIESGO

Los principales problemas presentes en la masa de agua subterránea Niebla son:

Contaminación por nitratos. La actividad agrícola y urbana presente en la zona ha propiciado que la masa de agua subterránea Niebla sea susceptible de sufrir contaminación por este parámetro procedente de fertilizantes, otros medios de producción agrarios y por las aguas residuales de origen urbano (Figura nº8). De acuerdo con las analíticas realizadas en esta masa de agua en los últimos años, se han alcanzado concentraciones máximas de nitratos con valores de más de 145,5 mg/l con el consecuente

incumplimiento de las normas de calidad ambiental vigentes cuyo valor límite se sitúa en 50 mg/l. La presencia de concentraciones elevadas de nitratos en las masas de agua tiene efectos de diversa índole. Por un lado, el deterioro o contaminación de los recursos de las masas de agua subterráneas para abastecimiento urbano. Por otro lado, se trata de una contaminación resistente y duradera, lo que dificulta la regeneración de las masas contaminadas para el cumplimiento de los objetivos medioambientales. Además, los ecosistemas terrestres dependientes de las aguas subterráneas podrían acabar viéndose afectados por la contaminación por nitratos vía surgencias y manantiales.

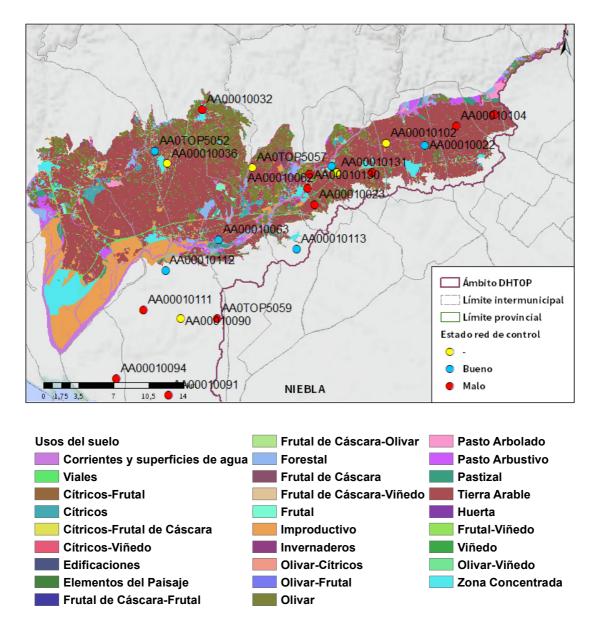


Figura nº8. Red de control y actividades agrícolas de la masa de agua Niebla.

1.8 ANÁLISIS DE LA EVOLUCIÓN

En este apartado, se han estimado las tendencias evolutivas sobre el posible aumento de las concentraciones de los contaminantes, grupos de contaminantes o indicadores de contaminación, detectados en la masa de agua subterránea en riesgo de no alcanzar un buen estado químico.

La estimación de tendencias evolutivas se ha realizado para aquellos parámetros que hayan contribuido a la clasificación de las masas en riesgo. En este caso, los parámetros responsables de esta situación son los nitratos, cloruros y la conductividad.

Los datos analíticos disponibles corresponden con los registrados en los puntos de muestreo que integran las redes de seguimiento de control de vigilancia y operativo desde 2009 a 2019. La evolución temporal de dichos registros analíticos se ha comparado con los valores paramétricos relativos a normas de calidad, teniendo en cuenta, siempre que exista disponibilidad, las concentraciones de referencia naturales (niveles de referencia) y los valores umbral.

Para el desarrollo de dicho análisis se han generado una serie de gráficos de evolución, en los cuales se ha representado de manera individualizada cada parámetro, en relación a cada estación que ha presentado incumplimientos de dicho parámetro. Asimismo, en dichos gráficos se han añadido los valores correspondientes a los niveles de referencia o normas de calidad.

El procedimiento empleado se basa en la representación gráfica de la evolución registrada para cada parámetro que haya contribuido a la clasificación en riesgo de las masas de agua subterránea. En dicho gráfico se han representado, por un lado, las líneas estáticas correspondientes a los respectivos niveles de referencia y las tendencias de las gráficas de evolución del parámetro analizado.

Durante los trabajos de seguimiento del estado de las masas de agua subterránea identificadas en la DHTOP, se llevó a cabo la identificación del riesgo de no alcanzar los objetivos medioambientales fijados en el artículo 4 de la Directiva 2000/60/CE, en dichas masas. El resultado de estos trabajos establece que la masa de agua subterránea ES064MSBT000305930 Niebla presenta riesgo por contaminación difusa, en base a los valores de concentración de nitratos, cloruros y conductividad. Los siguientes gráficos muestran la evolución en aquellos puntos de muestreo

identificados en la masa de agua que han presentado incumplimientos o que tienen antecedentes de incumplimientos en anteriores ciclos de planificación.

En las gráficas siguientes se puede ver como en los puntos de muestreo AA00010130 y AA00010087 (Figura n°9 y Figura n°10) se alcanzan unos valores que superan el límite normativo de 50 mg/l de manera continuada en el caso del punto de muestreo AA00010087 y en los años 2013, 2017 y 2018 en el caso del punto de muestreo AA00010130. Cuando existe una regularidad de los datos en valores de incumplimiento del valor límite se indica que estos puntos deben ser seguidos y estudiados de manera más exhaustiva para precisar acciones enfocadas a regular los niveles de nitratos.

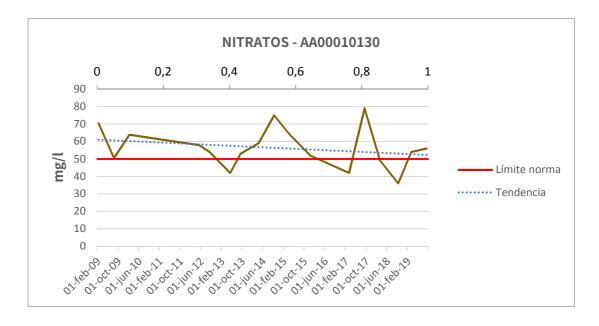


Figura nº9. Evolución de los valores de nitratos en el punto de muestreo AA00010130

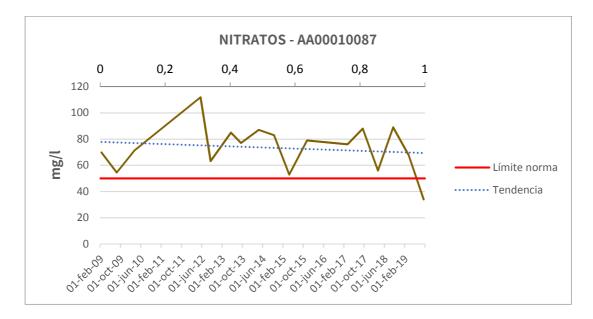


Figura nº10. Evolución de los valores de nitratos en el punto de muestreo AA00010087

AA00010104: Este punto de muestreo presenta valores de concentración de nitratos superiores al nivel de referencia normativo (50 mg/l) con un incremento de los valores desde 2015 hasta un máximo de 160 mg/l en el año 2019, si bien es cierto que en el último año se produce un brusco descenso, se recomienda aplicar medidas correctoras oportunas en el entono de este punto de muestreo para reducir la posible concentración de nitratos en el futuro (Figura nº11).

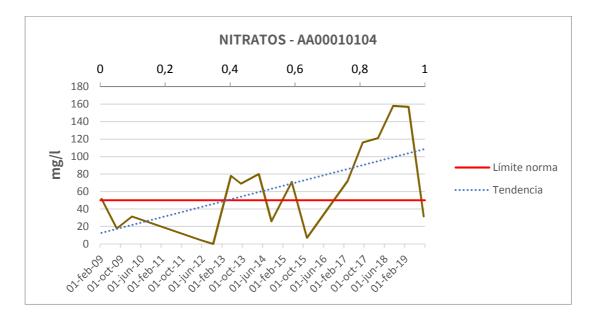


Figura nº11. Evolución de los valores de nitratos en el punto de muestreo AA00010104

En lo que se refiere a los valores de conductividad y cloruros, dada la relación presente en los parámetros, se ha analizado el comportamiento similar observado de los valores de ambos parámetros en los puntos de muestreo AA00010103 y AA00010023.

AA00010103: este punto de muestreo presenta un descenso continuado de los valores de cloruro y conductividad entre los años 2013 y 2017, para ascender de la más progresivamente hasta alcanzar unos valores máximos en el año 2018. En la actualidad, parece que ambos parámetros están en una fase de descenso que se recomienda seguir para confirmar esta tendencia o si se vuelve a producir una inversión de la evolución de los valores (Figura n°12 y Figura n°13).

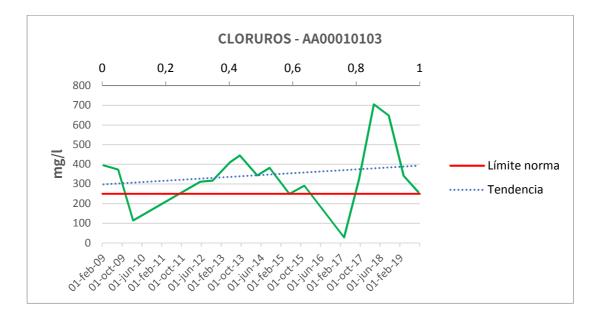


Figura nº12. Evolución de los valores de cloruros en el punto de muestreo AA00010103

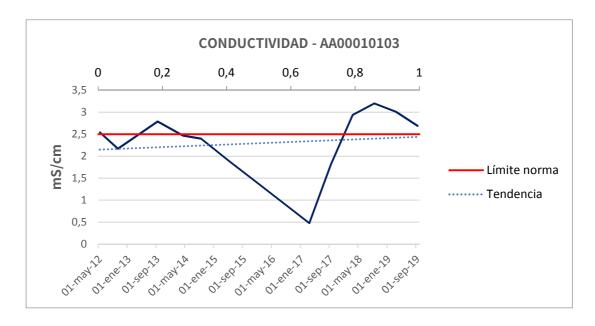


Figura n°13. Evolución de los valores de conductividad en el punto de muestreo AA00010103

AA00010023: las gráficas siguen líneas de idéntico desarrollo, con picos de valores en los años 2013, 2014 y 2017, si bien es cierto, que el valor máximo de conductividad de casi 5 mS/cm en el año 2019, y que duplica el máximo nivel de referencia de 2,5

mS/cm, no se ve reflejado en los valores de la concentración de cloruros (Figura n°14 y Figura n°15). No obstante, y dado que ambos parámetros superan ampliamente los límites establecidos, se recomienda hacer un seguimiento de este punto y definir medidas en su entorno enfocadas a regular estos valores.

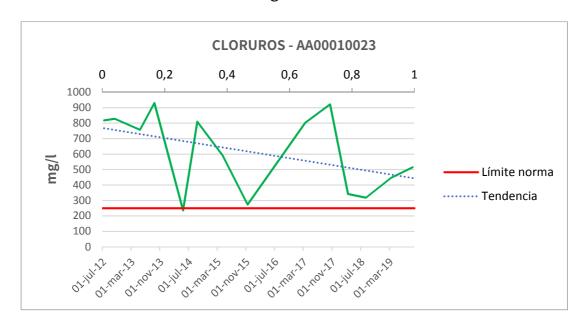


Figura nº14. Evolución de los valores de cloruros en el punto de muestreo AA00010023

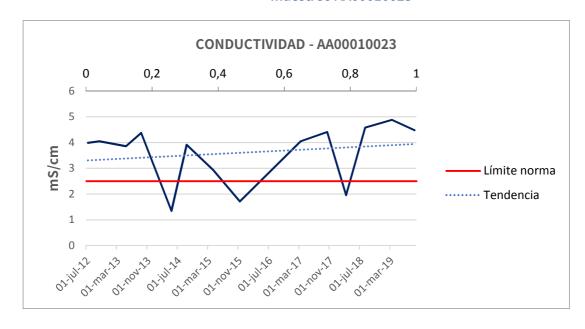


Figura nº15. Evolución de los valores de conductividad en el punto de muestreo AA00010023

Se debe mencionar, dentro de la posible contaminación por fitosanitarios, que ya se detecta en las redes de control de las aguas subterráneas la aparición de plaguicidas como el glifosato, los clorpirifos y la terbutilacina. Se ha estimado la situación del contenido de glifosato en la masa de agua subterránea a partir de la representación de aquellos valores que superan el valor de referencia normativo de $0,1~\mu g/l$. Se ha observado la presencia de glifosato en la masa de agua subterránea por ser el tipo de plaguicida más frecuentemente hallado en valores por encima tanto del umbral observable como del nivel de referencia ambiental.

La mayor parte de los puntos de control donde se ha observado la presencia de glifosatos presenta unas concentraciones estables de este compuesto entre 0-3 μ g/l de máximo, a excepción del punto de control AA00010023 que presenta unos valores más elevados con máximos muy similares de 18,5 y 18,1 μ g/l en 2015 y 2019 respectivamente (Figura n°16).

El punto de control AA00010032 presenta un desproporcionado valor de 200 μg/l en 2019 que distorsiona la representatividad de los datos ya que difiere mucho del resto de valores observados y que puede deberse a un error anómalo (Figura n°17).

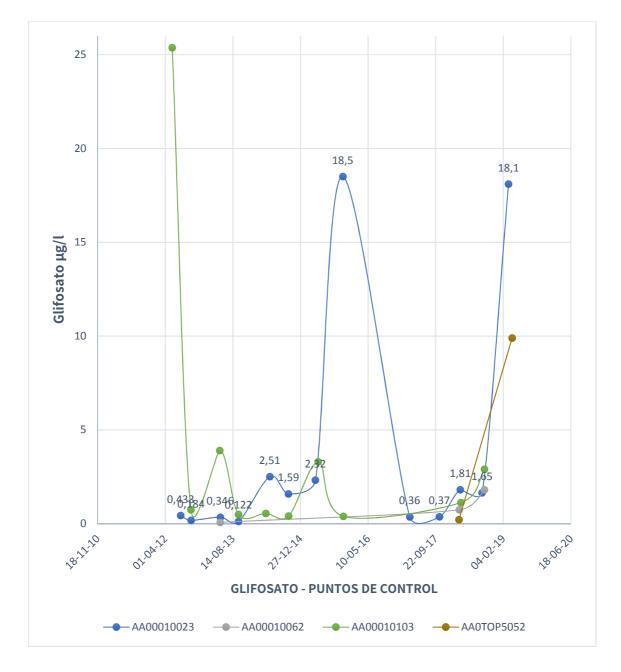


Figura nº16. Valores de concentración de glifosatos en diferentes puntos de control de la masa de agua subterránea Niebla

Figura nº17. Valores de concentración de glifosatos en el punto de control AA00010032 de la masa de agua subterránea Niebla

1 ES064MSBT000305940 LEPE-CARTAYA

1.1 INFORMACIÓN SOBRE LA MASA DE AGUA

UBICACIÓN	POBLACIÓN ASENTADA (N° HAB.)	MARCO GEOGRÁFICO (HIDROGRAFÍA)
Se sitúa en la provincia de Huelva. Casi todo su ámbito se encuadra en las comarcas de Costa de Huelva y Andévalo Occidental (Figura nº1)	90.354	Ríos principales: Piedras, Odiel

Tabla nº 1. Información sobre la masa de agua de Lepe-Cartaya

1.2 LOCALIZACIÓN GEOGRÁFICA Y ÁMBITO ADMINISTRATIVO

ÁMBITO ADMINISTRATIVO	LOCALIZACIÓN
Comunidad Autónoma	Andalucía
Distrito	Atlántico
Provincia	Huelva

Tabla nº 2. Localización geográfica de la masa de agua de Lepe-Cartaya

1.2.1 TOPOGRAFÍA Y COORDENADAS DEL CENTROIDE

TOPOGRAFÍA							
Coordenadas del centroide (HUSO 30N)		Geon	netría	Altitud (m	n.s.n.m.)		
U.T.M. X (m)	U.T.M. Y (m)	Perímetro (km)	Superficie (km²)	Máxima	Mínima		
136.337	4.137.654,8	217,77	632,42	199	0		

Tabla nº 3. Topografía y coordenadas de la masa de agua Lepe-Cartaya

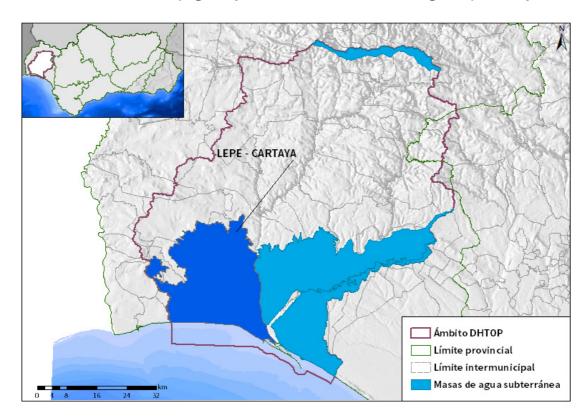


Figura nº1. Localización de la masa de agua Lepe-Cartaya

1.2.2 REGISTRO DE ZONAS PROTEGIDAS

Código EU zonas protegidas	Nombre	Tipo de	Coordenadas	Coordenadas	Código
Codigo EO Zorias protegidas	Captación	captación	UTM X (m)	UTM Y (m)	SINAC ¹
	Canal del				
ES064ZPROT6150020000001025493	Chanza -	Pozo	127.208	4.133.280	25493
	ETAP				
FC0C47DDOTC1F0020000002007412	Pozo El	Daza	125 500	4 120 000	7412
ES064ZPROT6150020000002007413	Rompido	Pozo	135.508	4.128.968	7413

Tabla nº 4. Zonas protegidas para abastecimiento. Captaciones de aguas subterráneas

ZONAS VULNERABLES					
	Superficie de espacio vulnerable (km²)				
Nombre	Total	Parte incluida en la	Porcentaje de la		
	Totat	masa	masa		
Zona 1 Ayamonte – Lepe - Cartaya	234,11	53,9	8,53		
Zona 25 Niebla - Posadas	489,33	29,7	5,6		

Tabla nº 5. Zonas vulnerables a la contaminación por nitratos.

ZONAS PROTEGIDAS DE HÁBITAT O ESPECIES						
		Superficie de espacio protegido (km²)				
Nombre	Figura de protección	Total	Parte incluida	Porcentaje de		
	•		en la masa	la masa		
Estuario del Río Tinto	ZEC	11,67	4,76	0,75		
Marismas del Odiel	ZEPA	66,18	51,53	8,15		
Marismas del Odiel	LIC	66,18	51,53	8,15		

¹ Sistema de Información Nacional de Aguas de Consumo (SINAC). Ministerio de Sanidad, Consumo y Bienestar Social.

ZONAS PROTEGIDAS DE HÁBITAT O ESPECIES						
	Figure de	Superficie de espacio protegido (km²)				
Nombre	Figura de protección	Total	Parte incluida en la masa	Porcentaje de la masa		
Marismas del Río Piedras y Flecha del Rompido	ZEPA	24,09	23,97	3,79		
Laguna de El Portil	LIC	12,66	12,66	2,00		
Enebrales de Punta Umbría	LIC	1,88	1,68	0,27		
Marismas del Río Piedras y Flecha del Rompido	LIC	24,09	23,97	3,79		
Estuario del Río Piedras	LIC	4,43	4,43	0,70		
Marisma de Las Carboneras	LIC	2,63	2,63	<1		
Espacio marino del Tinto y del Odiel	ZEPA	38,18	<1	<1		

HUMEDALES					
	Superficie del humedal (km²)				
Nombre	Total	Parte incluida	Porcentaje de		
	Totat	en la masa	la masa		
Laguna de las Pajas	<1	<1	<1		
Laguna del Chaparral	<1	<1	<1		
Laguna de Gamonales	<1	<1	<1		
Marismas del Río Piedras y Flecha del	24,1237	23,9292	3,7838		
Rompido					
Laguna de la Dehesilla	<1	<1	<1		
Laguna del Cuervo	<1	<1	<1		
Laguna del Medio o de los Barracones	<1	<1	<1		
Marismas del Odiel	66,3063	51,7945	8,1899		
Laguna del Águila	<1	<1	<1		

ZONAS PROTEGIDAS DE HÁBITAT O ESPECIES					
	Figure de	Superficie de espacio protegido (km²)			gido (km²)
Nombre	Figura de protección		Total	Parte incluida en la masa	Porcentaje de la masa
Gravera de Manzorrale	S		<1	<1	<1
Laguna de El Portil			<1	<1	<1

Tabla nº 6. Zonas de protección de hábitat o especies y humedales.

1.2.3 POBLACIÓN ASENTADA

DATOS DEL PADRÓN REFERENTES AL NÚCLEO DE:	POBLACIÓN ASENTADA DE DERECHO
	2019
Aljaraque	21.083
Aljaraque / Gibraleón	109
Cartaya	20.184
Cartaya / Lepe	5
Cartaya / Punta Umbría	431
Gibraleón	764
Gibraleón / Punta Umbría	41
Huelva / Punta Umbría	732
Isla Cristina	121
Isla Cristina / Lepe	685
Lepe	28.193
Punta Umbría	14.243
San Bartolomé de la Torre	3.739
Villanueva de los Castillejos	24
TOTAL	90.354

Tabla nº 7. Población asentada sobre la masa de agua subterránea

1.3 CARACTERÍSTICAS INTRÍNSECAS

1.3.1 CARACTERÍSTICAS GEOLÓGICAS E HIDROLÓGICAS GENERALES

En esta masa de agua subterránea se distinguen los mismos tres niveles acuíferos que en la masa de agua subterránea Niebla: 1) arenas y conglomerados del Mioceno (acuífero detrítico basal), 2) arenas, limos arenosos, gravas y conglomerados del plioceno, y 3) el acuífero cuaternario formado por los depósitos permeables de terrazas, aluviales, dunas y playas.

Las entradas al sistema son fundamentalmente la infiltración de las precipitaciones y de la escorrentía superficial generada en su borde norte y, en menor medida, el retorno de riegos. Las salidas se producen por bombeos y, de forma natural, a ríos, marismas y al océano atlántico.

1.3.1.1 ÁMBITO GEOESTRUCTURAL

MARCO GEOLÓGICO					
UNIDADES GEOLÓGICAS DE RANGO MAYOR					
	Depresiones Neógenas				
Origen	Fluvial				
Naturaleza	Transgresivo marino				

Tabla nº 8. Unidades geológicas la masa de agua subterránea

1.3.1.2 DESCRIPCIÓN GEOLÓGICA

Comprende una serie de depósitos marinos del Mioceno incluidos en la depresión del Guadalquivir. Estos depósitos, de naturaleza detrítica, conforman un acuífero costero de tipo multicapa, adosado y limitado hacia el interior por los materiales triásicos y paleozoicos de la sierra de Huelva que se constituyen como su sustrato impermeable.

Sus límites hidrogeológicos quedan definidos por los ríos Guadiana y Odiel, en sus cursos bajos, terrenos paleozoicos y el Océano Atlántico. Este acuífero comprende una serie de depósitos marinos del Mioceno, parcialmente arrasados y después recubiertos por sedimentos pliocuaternarios de origen fluvio – marino y eólico.

Se constata la presencia de dos niveles de acuíferos bien definidos, uno superficial y otro profundo, separados entre sí por un paquete de margas azules que al Oeste del río Piedras desaparece, con lo que los dos niveles permeables se ponen en contacto.

1.3.1.3 COLUMNA LITOLÓGICA TIPO

ESTRATIGRAFÍA						
SÍNTESIS DE UNIDADES LITOESTRATIGRÁFICAS						
Litología	Extensión afloramiento (km²)	Potencia media estimada (m)	Edad			
Pizarras y Grauvacas	15,15	-	Carbonífero			
Calizas biogénicas, arenas y conglomerados (Tbc) "Formación calcarenitas de Niebla"	9,87	5-25	Mioceno Superior (Tortoniense)			
Margas azules Tm "Arcillas de Gibraleón"	Sin afloramientos	0 -> 1.000	Mioceno Superior (Andaluciense)			
Margas, arenas, areniscas (Tbc12) "Formación arenas de Huelva"	12,41	-	Plioceno			
Margas y limos grises (Tbm21)	9,08	15 – 20	Plioceno			
Limos arenosos y arenas gris amarillentas	73,22	0 – 40	Pliocuaternario			
Arenas y gravas arcillosas rojas "Formación arenas basales" (Tb2 - Q) "Formación arenas de Bonares	267,14	< 20	Cuaternario			

ESTRATIGRAFÍA							
SÍNTESIS DE UNIDADES LITOESTRATIGRÁFICAS							
Extensión Potencia Litología afloramiento media Edad (km²) estimada (m)							
Conglomerados, gravas y arenas ferruginosas (QG)	89,20	10 - 20	Cuaternario				
Terrazas (Qt)	0,36	-	Cuaternario				
Manto eólico (Qa)	7,61	0 – 3	Cuaternario				
Aluvial (Qal)	32,67	-	Cuaternario				
Dunas actuales y antiguas (Qd)	12,22	-	Cuaternario				

Tabla nº 9. Litología de la masa de agua subterránea

1.3.1.4 ESTRUCTURA

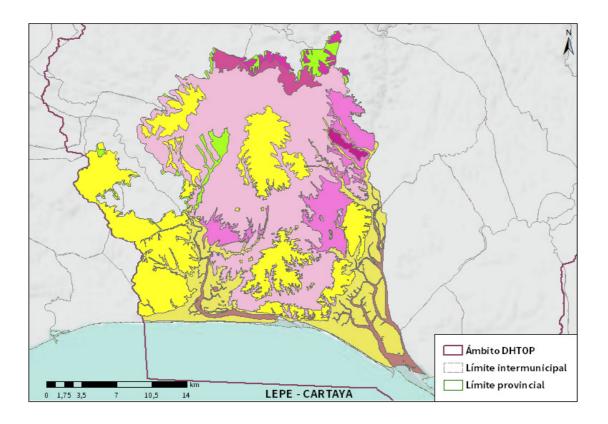


Figura nº2. Mapa de afloramientos litoestratigráficos de la masa de agua subterránea

1.3.1.5 TIPOLOGÍA HIDROLÓGICA GENERAL

DETRÍTICO	CARBONATADO	міхто	MIXTO Y OTROS	ACUÍFEROS LOCALES
Х				

Tabla nº 10. Tipología de la masa de agua subterránea

1.3.1.6 LÍMITES HIDROLÓGICOS DE LA MASA DE AGUA SUBTERRÁNEA

ENCUADRE HIDROGEOLÓGICO							
	LÍ	MITES DE CONTOR	RNO				
Límite	Tipo	Sentido del flujo	Naturaleza				
Norte	Abierto	Entrada	Litológico				
Sur	Abierto	Salida	Océano Atlántico				
Este	Abierto	Nulo	Litológico				
Oeste	Abierto	Nulo	Administrativo				

Tabla nº 11. Límites hidrológicos de la masa de agua subterránea

1.3.1.7 ACUÍFEROS CONSTITUYENTES DE LA MASA DE AGUA SUBTERRÁNEA

ACUÍFEROS CONSTITUYENTES						
DESCRIPCIÓN						
Denominación Naturaleza Litología						
Mioceno de Base Carbonatado Calizas bioclástic						
Pliocuaternario	Detrítico	Arenas y gravas				

Tabla nº 12. Acuíferos de la masa de agua subterránea

1.3.1.8 ESPESOR SATURADO DE LOS ACUÍFEROS CONSTITUYENTES DE LA MASA DE AGUA SUBTERRÁNEA

GEOMETRÍA								
Denominación	Potencia estimada (m)	Disposición						
Mioceno de base	9,87	5 – 10	Tabular					
Pliocuaternario	503,91	20	Tabular					

Tabla nº 13. Espesor saturado de los acuíferos de la masa de agua subterránea

1.3.1.9 CARACTERÍSTICAS HIDRÁULICAS

FUNCIONAMIENTO							
Denominación Comportamiento Porosidad Permeabilidad (m							
Mioceno de Base	Mioceno de Base Confinado		10-4 - 10-6				
Pliocuaternario	Libre - semiconfinado	Intergranular	10-2 - 10-5				

Tabla nº 14. Características hidráulicas de la masa de agua subterránea

COEFICIENTE DE ALMACENAMIENTO								
Denominación	Valor	Valor de coeficiente de almacenamiento						
Denominación	Rango	Valor medio	Método de determinación					
Mioceno de Base	10 ⁻³ – 10 ⁻⁵	5,5*10-4	Ensayos de Bombeo					
Pliocuaternario	10-3	10 ⁻³ /0,06	Ensayos de Bombeo					

Tabla nº 15. Características de almacenamiento de la masa de agua

1.3.2 ZONA NO SATURADA

1.3.2.1 POTENCIA NO SATURADA

	ZONA NO SATURADA								
	ESPESOR								
Fecha	Valor	es (m.s.	n.m.)	Distribución espacial					
reciia	Máximo	Medio	Mínimo	Intervalo (m)	Porcentaje de masa				
				-	-				
_	_		_	-	-				
_	-	_	_			-	-		
				-	-				

Tabla nº 16. Potencia de la zona no saturada de la masa de agua subterránea

1.3.2.2 EDAFOLOGÍA

SUELOS							
Tipología	Espesor medio (cm)	Extensión (%)					
Planosol eútrico	-	55,13					
Cambisol eutrico	-	10,20					
Cambisol cálcico	-	9,19					
Regosol calcáreo	-	8,84					
Solonchak takíricos	-	8,47					
Regosol eútrico	-	6,98					
Regosol dístrico	-	1,19					

Tabla nº 17. Edafología de la masa de agua subterránea

1.3.2.3 VULNERABILIDAD A LA CONTAMINACIÓN

VULNERABILIDAD A LA CONTAMINACIÓN								
	MÉTODO DRASTIC							
Clase	Clase Rango Superficie (km²) Extensión (%)							
Muy baja	1-2	16,55	3,57					
Ваја	3-4	3-4 345,85	345,85	74,48				
Moderada	5-6	90,15	19,42					
Alta	7-8	11,78	2,54					
Muy alta	9-10	0	0					

Tabla nº 18. Vulnerabilidad de la masa de agua subterránea

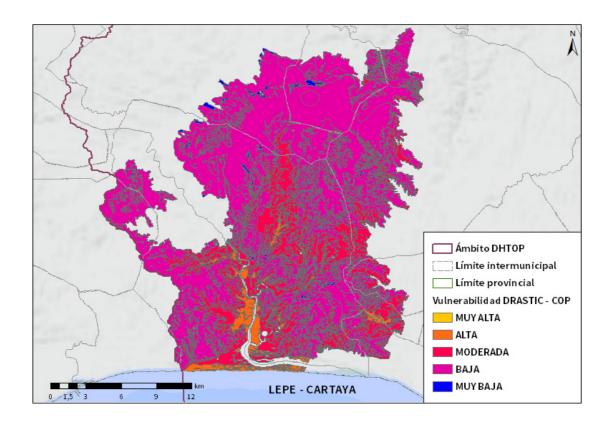
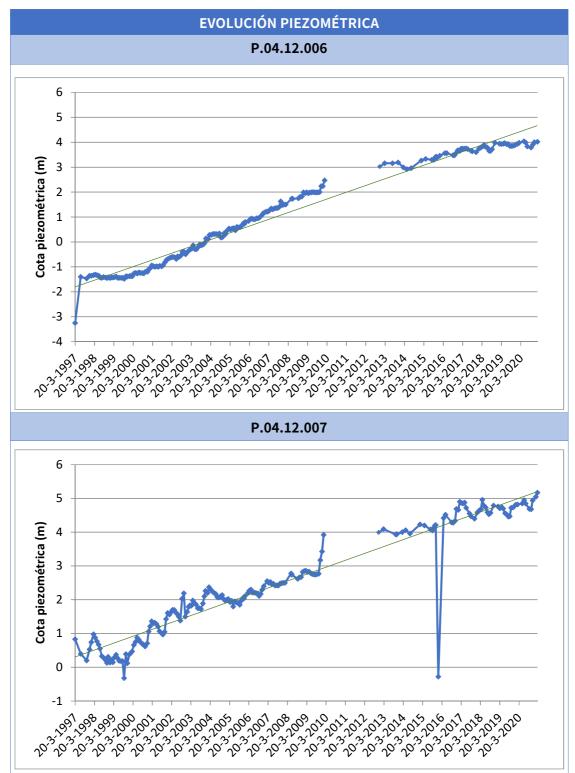


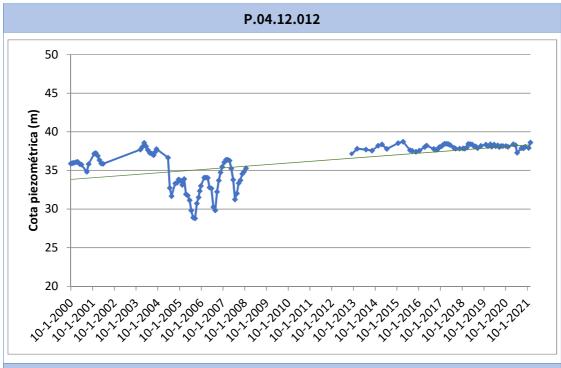
Figura nº3. Mapa de Vulnerabilidad de la masa de agua subterránea

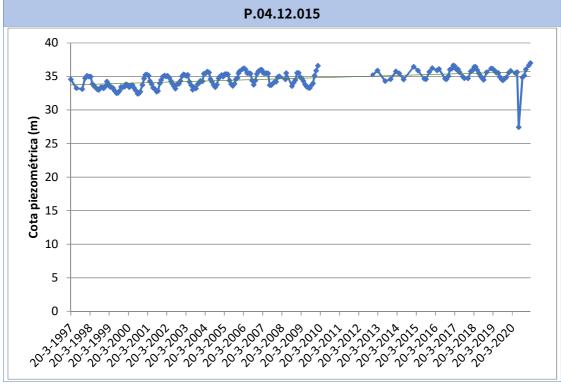
1.3.3 PIEZOMETRÍA Y VARIACIÓN DEL ALMACENAMIENTO

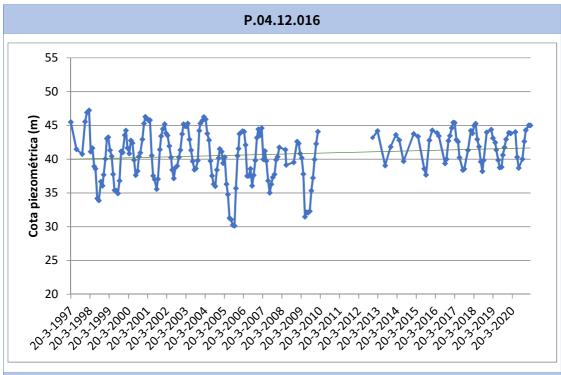
1.3.3.1 PUNTOS DE CONTROL Y CLASIFICACIÓN PIEZOMÉTRICA

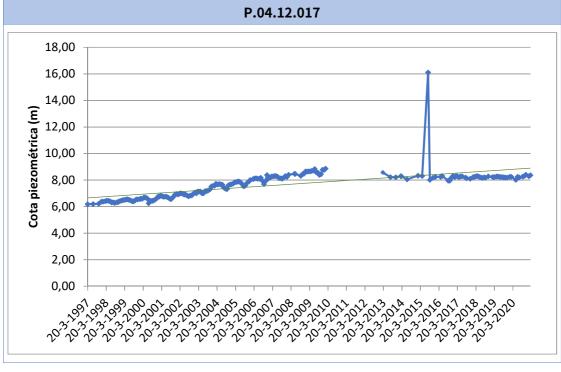
PIEZOMETRÍA							
		PUNTOS	DE CONTR	OL PIEZOMÉTRIC	0		
Código	Cota (m)		nadas UTM (m)	Clasificación	Código masa		
punto	(111)	Х	Υ				
P.04.12.006	7	125.476	4.126.641	Ascendente- Estabilidad	ES064MSBT000305940		
P.04.12.007	13	128.962	4.128.355	Ascendente- Estabilidad	ES064MSBT000305940		
P.04.12.012	54	141.955	4.139.676	Estabilidad	ES064MSBT000305940		
P.04.12.015	44	135.788	4.136.048	Estabilidad	ES064MSBT000305940		
P.04.12.016	54	139.206	4.137.998	Estabilidad	ES064MSBT000305940		

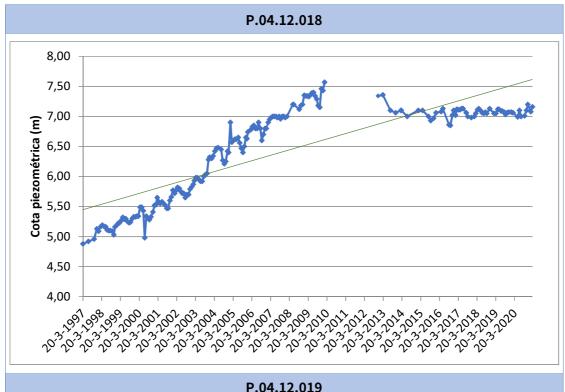


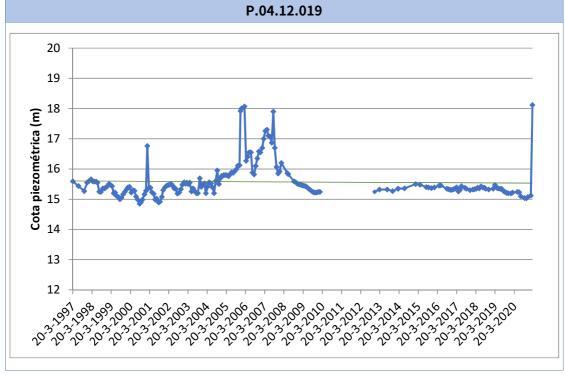

	PIEZOMETRÍA								
	PUNTOS DE CONTROL PIEZOMÉTRICO								
Código	Cota	Coordenadas UTM (m)		Clasificación	Código masa				
punto	(m)	Х	Υ						
D 04 12 017	20	120.055	4 120 500	Ascendente-	ES064MSBT000305940				
P.04.12.017	28	138.855	4.128.589	Estabilidad	L3004M3B1000303340				
D 04 10 010	10	1.41.000	4 107 015	Ascendente-	FC0C4MCDT00020F040				
P.04.12.018	13	141.293	4.127.015	Estabilidad	ES064MSBT000305940				
P.04.12.019	38	139.939	4.133.462	Estabilidad	ES064MSBT000305940				
P.04.12.020	22	135.615	4.129.202	Ascendente	ES064MSBT000305940				
D 04 12 021	12	142 540	4 120 114	Ascendente-	ESOGAMSPT000205040				
P.04.12.021	13	143.548	4.130.114	Estabilidad	ES064MSBT000305940				


Tabla nº 19. Puntos de control piezométrico de la masa de agua subterránea y estado




1.3.3.2 GRÁFICAS DE EVOLUCIÓN PIEZOMÉTRICA





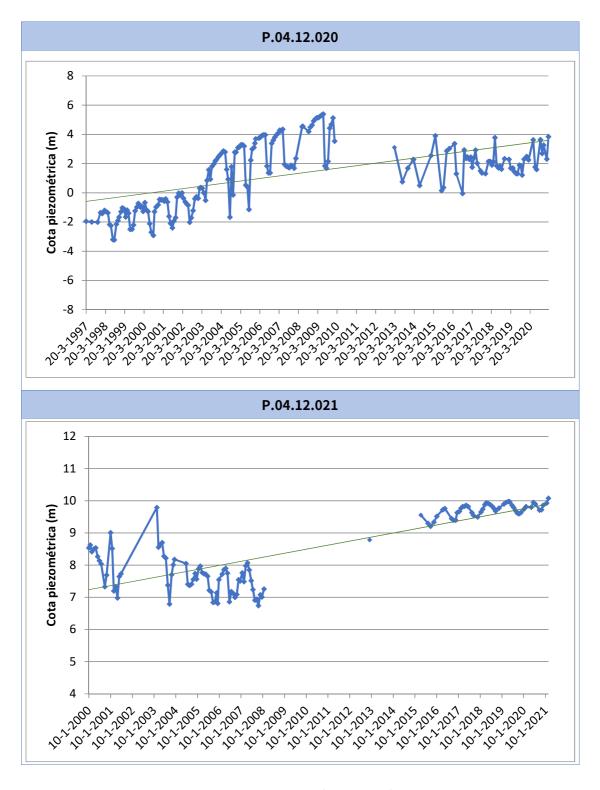


Figura nº4. Evolución piezométrica

Todos los piezómetros existentes en la masa de agua se consideran representativos ya que ofrecen registros desde el año 1997/2000 hasta la actualidad. Los piezómetros P.04.12.006, P.04.12.007, P.04.12.017, P.04.12.018 presentan en la

actualidad una aparente fase de estabilidad tras una fase de ascenso desde el inicio de los registros. El resto de los piezómetros presenta una estabilidad en los niveles piezométricos con variaciones estacionales o irregularidades ocasionalmente.

1.3.3.3 MAPA DE ISOPIEZAS Y PERMEABILIDADES

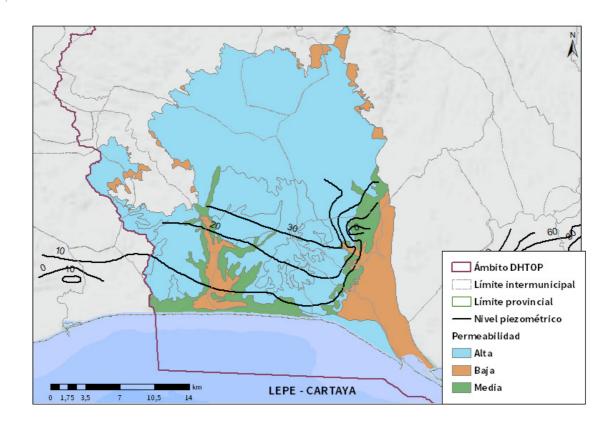


Figura nº5. Mapa de isopiezas y de permeabilidades de Andalucía (2006)

1.3.4 CONEXIÓN CON CURSOS DE AGUA Y ZONAS HÚMEDAS

1.3.4.1 DEPENDENCIA DE ECOSISTEMAS ACUÁTICOS

HUMEDALES	DEPENDENCIA DE TRAMOS FLUVIALES				
	EN LA MASA	FUERA DE LA MASA			
SI	SI	SI			

Tabla nº 20. Dependencia con ecosistemas acuáticos en la masa de agua subterránea

TRAMOS FLUVIALES ASOCIADOS					
Nombre de la masa	Coeficiente de reparto				
Rivera de Meca I	Río	0,11			
Río Odiel IV	Río	0,21			
Arroyo Tariquejo	Río	0,16			
Arroyo Membrilla	Río	0,06			

Tabla nº 21. Masas de agua superficiales dependientes de la masa de agua subterránea

HUMEDALES DEPENDIENTES			
	Superficie del humedal (km²)		
Nombre	Total	Parte incluida en la masa	Porcentaje de la masa
Laguna de El Portil	0,1597	0,1597	0,0253

Tabla nº 22. Humedales dependientes de la masa de agua subterránea

1.3.4.2 DESCRIPCIÓN Y OBSERVACIONES

MASAS DE AGUA SUPERFICIALES UBICADAS SOBRE LA MASA SUBTERRÁNEA					
Nombre de la masa	Categoría	Long. Total (km)	Long. Incluida en la masa (km)		
Río Odiel IV	Río	81,66	0,73		
Arroyo Tariquejo	Río	7,96	7,96		
		Sup. Total (km²)	Sup. Incluida en la masa (km²)		
Embalse de El Sancho	Lago	4,59	0,02		
Laguna de El Portil	Lago	0,14	0,14		
Punta Umbría - 1500 m antes de la punta del espigón de Huelva	Costeras	23,82	-		
Límite de la Demarcación Guadiana/Tinto-Odiel - Punta Umbría	Costeras	126,42	0,43		
Canal del Padre Santo 2 (Marismas del Odiel- Punta de la Canaleta)	Transición	5,58	2,22		
Puerto de el Terrón - Desembocadura del Piedras	Transición	9,37	9,37		
Rio Odiel II (Puerto de Huelva)	Transición	5,47	3,30		
Marismas del Odiel	Transición	42,52	39,06		
Cartaya - Puerto de el Terrón	Transición	10,87	10,87		
Embalse de los Machos - Cartaya	Transición	2,30	2,23		
Rio Odiel I (Gibraleón)	Transición	27,13	11,85		
HUMEDALES					
Nombre		Sup	Superficie del humedal (km²)		

MASAS DE AGUA SUPERFICIALES UBICADAS SOBRE LA MASA SUBTERRÁNEA						
Nombre de la masa	Categoría	L	ong. Total (km)	Long. Incluida en la masa (km)		
		Total	Parte incluida	Porcentaje de		
			100.00	en la masa	la masa	
Laguna de las Pajas			0,0023	0,0023	0,0004	
Laguna del Chaparral			0,0011	0,0011	0,0002	
Laguna de Gamonales		0,0016	0,0016	0,0003		
Marismas del Río Piedras y Flecha del		24,1237	23,9292	3,7838		
Rompido						
Laguna de la Dehesilla		0,0059	0,0059	0,0009		
Laguna del Cuervo			0,0054	0,0054	0,0009	
Laguna del Medio o de los Barracones		0,0032	0,0032	0,0005		
Marismas del Odiel		66,3063	51,7945	8,1899		
Laguna del Águila		0,0079	0,0079	0,0013		
Gravera de Manzorrales		0,2267	0,2267	0,0358		
Laguna de El Portil		0,1597	0,1597	0,0253		
Marisma de las Carboneras		2,6281	2,6281	0,4156		

Tabla nº 23. Masas de agua en la superficie de la masa de agua subterránea

1.3.5 FLUJOS

1.3.5.1 RECARGA

Entradas a las masas de agua (hm³/año)						
Acuífero	Infiltración por lluvia	Retornos procedentes de riego	Otras entradas	Recurso disponible		
Lepe- Cartaya	45,5	2,6	0	33,7		

Tabla nº 24. Recarga de la masa de agua subterránea

1.3.5.2 DESCARGA

La descarga se produce de forma natural hacia acuíferos contiguos mediante descargas laterales.

1.3.5.3 RECARGA ARTIFICIAL

No se realiza ningún tipo de recarga artificial en esta masa de agua

1.4 PRESIONES

1.4.1 EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS

1.4.1.1 EXTRACCIONES A PARTIR DEL ANÁLISIS DE USOS Y DEMANDAS

VOLUMEN ANUAL EXTRAÍDO								
Abastecimiento (hm³)	Agrícola (hm³)	Industrial (hm³)	Golf (hm³)	Ganadería (hm³)	Trasvase (hm³)	TOTAL (hm³)		
0	13,32	0	2,75	0	0	16,07		

Tabla nº 25. Extracciones en la masa de agua subterránea

1.4.2 OCUPACIÓN GENERAL DEL SUELO

1.4.2.1 DISTRIBUCIÓN SEGÚN EL SISTEMA DE INFORMACIÓN GEOGRÁFICA DE PARCELAS AGRÍCOLAS DE ANDALUCÍA (2019)

TIPO	SUPERFICIE (ha)	SUPERFICIE (%)
Forestal	18.184,06	28,79
Cítricos	8.702,09	13,78
Tierra Arable	8.074,13	12,78
Improductivo	8.055,78	12,76
Invernaderos	3.488,34	5,52
Frutal	2.974,54	4,71
Zona Urbana	2.598,47	4,11

TIPO	SUPERFICIE (ha)	SUPERFICIE (%)
Corrientes y superficies de agua	2.590,80	4,10
Olivar	2.308,65	3,66
Pasto Arbolado	1.854,96	2,94
Pasto Arbustivo	1.445,27	2,29
Pastizal	1.409,02	2,23
Viales	1.262,25	2,00
Frutal de Cáscara	80,65	0,13
Viñedo	58,24	0,09
Huerta	26,05	0,04
Edificaciones	16,09	0,03
Cítricos-Frutal	13,87	0,02
Olivar-Cítricos	3,84	0,01
Olivar-Frutal	3,27	0,01
Olivar-Viñedo	2,32	0
Frutal-Viñedo	1,84	0
Cítricos-Frutal de Cáscara	1,75	0
Cítricos-Viñedo	0,31	0
Elemento del Paisaje	0,04	0
Frutal de Cáscara-Viñedo	0,02	0

Nota: Los valores nulos de la columna de superficie son valores muy bajos casi nulos. La suma de la superficie en porcentaje no es 100 dada la falta de estos valores nulos

Tabla nº 26. Distribución de usos del suelo según el Sistema de Información Geográfica de Parcelas Agrícolas de Andalucía (SIGPAC 2019)

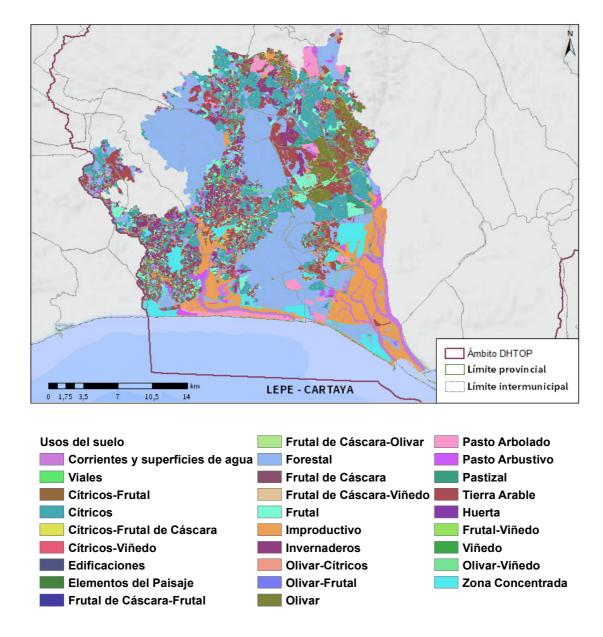


Figura nº6. Mapa de distribución de usos del suelo según el Sistema de Información Geográfica de Parcelas Agrícolas de Andalucía (SIGPAC 2019)

1.4.3 PRESIÓN PUNTUAL

		Val	oración de la pr			
	Descripción	(nº de eı	mplazamientos (en 10 km²)		
Tipo	de fuente puntual	Potencialme nte muy importante	Potencialmen te Importante	Potencialmen te no importante	Densidad	Valoración
1.1	Aguas residuales urbanas	>1	0,2 - 1	< 0,2	-	Sin presión
1.2	Aliviaderos	>1	0,2 - 1	< 0,2	-	Sin presión
1.3	Plantas IED	>1	0,2 - 1	< 0,2	-	Sin presión
1.4	Plantas no IED	>1	0,2 - 1	< 0,2	-	Sin presión
1.5	Suelos contaminad os / Zonas industriales abandonada s	>1	0,2 - 1	< 0,2	0,016	No importante ²
1.6	Zonas para eliminación de residuos	> 0,5	0,1 - 0,5	< 0,1	-	Sin presión
1.7	Aguas de minería	> 1	0,2 - 1	< 0,2	-	Sin presión
1.8	Acuicultura	>1	0,2 - 1	< 0,2	-	Sin presión
1.9	Otras	> 2	0,5 - 2	< 0,5	0,4	No importante

Tabla nº 27. Presiones puntuales en la masa de agua subterránea

² En el caso de las presiones del tipo 1.5 (Suelos contaminados / Zonas industriales abandonadas), se ha considerado en sí misma como presión la presencia de un suelo contaminado sin restaurar/descontaminar

1.4.4 PRESIÓN DIFUSA

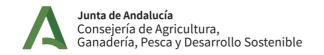
	Descripción	(% de la	superficie ocu	upada)		
Tipo	de fuente	Potencialme	Potencialme	Potencialme	Densidad	Valoración
	difusa	nte muy	nte	nte no		
		importante	Importante	importante		
	Escorrentía					
2.1	urbana /	> 10 %	2 – 10 %	< 2 %	4,63%	Importante
	alcantarillado					
2.2	Agricultura	> 30 %	10 – 30 %	< 10 %	36,20%	Muy
2.2	Agricultura	2 30 %	10 - 30 %	\ 10 %0	30,20%	importante
2.3	Forestal	> 10 %	2 – 10 %	< 2 %	-	Sin presión
2.4	Transporte	> 2 %	1 – 2 %	< 1 %	1,83%	Importante
	Suelos					
	contaminados					No
2.5	/ Zonas	> 2 %	1 – 2 %	< 1 %	0,03%	importante ³
	industriales					importante
	abandonadas					
	Vertidos no					
2.6	conectados a	> 2.0/	1 – 2 %	< 1 %		Cin nyaaián
2.6	la red de	> 2 %	1 - 2 %	< 1 %	-	Sin presión
	saneamiento					
2.7	Deposición	> 2.04	1 – 2 %	- 1 0/-		Cin proción
2.7	atmosférica	> 2 %	1 – 2 %	< 1 %	-	Sin presión
2.8	Minería	> 2 %	1 – 2 %	< 1 %	0,40%	No
2.0	Millella	~ Z %0	1 - 2 %0	~ 1 %0	0,40%	importante
2.9	Acuicultura	> 2 %	1 – 2 %	< 1 %	-	Sin presión

³ En el caso de las presiones del tipo 2.5 (Suelos contaminados / Zonas industriales abandonadas), se ha considerado en sí misma como presión la presencia de un suelo contaminado sin restaurar/descontaminar

	Descrip								
Tipo	ción de fuente difusa	Muy importa nte	nporta Importante ente		Moder ada	No importante	Densidad	Valoración	
2.10	Otras (ganad ería)	>150	75-150	50-75	25-50	<25	42,87	Moderada	

Tabla nº 28. Presiones difusas de la masa de agua subterránea

1.5 ESTADO E IMPACTOS


La actividad agrícola presente en la zona ha propiciado que esta masa de agua subterránea sea susceptible de sufrir contaminación por nitratos procedentes de fertilizantes y otros medios de producción agrarios. De acuerdo con las analíticas realizadas en esta masa de agua en los últimos cuatro años (2016 – 2019), se han alcanzado concentraciones máximas de nitratos de 66 mg/l en el año 2019, incumpliendo así el objetivo medioambiental de tener concentraciones inferiores a los 50 mg/l.

1.5.1 EVALUACIÓN DEL ESTADO CUANTITATIVO

(hm³/año)	(hm³/año)	ESTIMADO (%)	CUANTITATIVO
VOLUMEN	RECURSOS	ÍNDICE DE	ESTADO
EXTRAÍDO	DISPONIBLES	EXPLOTACIÓN	

Tabla nº 29. Estado cuantitativo de la masa de agua subterránea

Un IE igual o superior a 80%, es indicativo de que las extracciones de agua suponen una presión importante para la masa de agua. Por encima de este valor se considera que la masa de agua está en mal estado cuantitativo. En concreto en esta masa de agua se observa un IE del 48% lo que indica que los recursos extraídos son

importantes respecto a la capacidad de recarga del acuífero, aunque fuera de peligro de ser sobreexplotado.

1.5.2 EVALUACIÓN DEL ESTADO QUÍMICO

1.5.2.1 NORMAS DE CALIDAD Y VALORES UMBRAL

PARÁMETROS	NORMAS DE CALIDAD
Conductividad (in situ) (20°C)	2.500 μs/cm
Cloruros	250 mg/l
Nitratos	50 mg/l
Arsénico	10 μg/l
Fluoruros	1,5 mg/l

Tabla nº 30. Valores umbrales para contaminantes

1.5.2.2 RED DE CONTROL DE DIAGNÓSTICO

CÓDIGO	COORDENADA UTM X (m)	COORDENDA UTM Y (m)
AA00010024	135.430	4.129.039
AA00010025	123.344	4.130.036
AA00010064	126.491	4.130.046
AA00010065	126.435	4.129.474
AA00010066	141.964	4.139.669
AA00010067	131.816	4.137.942
AA00010068	131.897	4.139.812
AA00010089	125.027	4.130.567
AA00010105	134.690	4.151.931
AA00010106	140.541	4.142.913
AA00010107	141.966	4.131.439
AA00010108	141.754	4.134.626

CÓDIGO	COORDENADA UTM X (m)	COORDENDA UTM Y (m)
AA0TOP5058	136.085	4.139.046
AA0TOP5060	133.264	4.144.981
AA00010040	140.659	4178.381
AA00010109	142.585	4.130.463
AA0TOP5061	133.273	4.144.983

Tabla nº 31. Puntos de la red de control de calidad en la masa de agua subterránea

1.5.2.3 ESTADO QUÍMICO

Se ha comprobado que las sustancias activas de los plaguicidas, incluidos los metabolitos y los productos de degradación y reacción que sean pertinentes no superen el $0,1\,\mu\text{g/l}$ (referido a cada sustancia) y el $0,5\,\mu\text{g/l}$ (referido a la suma de todos los plaguicidas detectados y cuantificados en el procedimiento de seguimiento año 2018).

Los resultados obtenidos en cada punto de control (medias anuales 2019) han sido los siguientes (Tabla nº 32):

PUNTO DE	CONDUCTIVI SITU)(20°C)		Cl (mg/l)	NO (mg/l)	As (μg/l)	F (r	ng/l)	Plaguicidas total (μg/l)	ESTADO
CONTROL	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	QUÍMICO
AA00010024	377	378	30,45	40,8	1,02	1,13	0,71	0,74	0,09	0,09	0,05	Bueno
AA00010040	308	3.011	28,7	35,6	9,8	12,7	0,69	0,74	0,14	0,16	0,06	Bueno
AA00010064	1.436	1,43	155	155	66	66	-	-	-	-	0,05	Malo
AA00010089	1.110	1.120	151,5	153	53,1	91	-	-	-	-	0,06	Malo
AA0TOP5058	-	-	-	-	-	-	-	-	-	-	-	-
AA00010065	2.036	2.100	224	319	12,35	17,7	-	-	-	-	0,05	Bueno
AA00010066	265	274	18,3	26,2	0,9	0,9	-	-	-	-	0,05	Bueno
AA00010068	2.515	2.630	182	282	5,28	9,5	-	-	-	-	0,05	Bueno
AA00010025	-	-	-	-	-	-	-	-	-	-	-	-
AA00010105	-	-	-	-	-	-	-	-	-	-	-	-
AA00010106	-	-	-	-	-	-	-	-	-	-	-	-
AA00010107	-	-	-	-	-	-	-	-	-	-	-	-
AA00010109	-	-	-	-	-	-	-	-	-	-	-	
AA0TOP5061	-	-	-	-	-	-	-	-	-	-	-	-
Media	1.150		11	2,85	2	1,2	(),7	0	,12	0,05	
Máximo	3.011		3	319	(91	0	,74	0	,16	0,06	

Nota: (Cl) cloruros; (NO) nitratos; (As) Arsénico; (F) Fluoruros

Tabla nº 32. Red calidad y diagnóstico

De los datos disponibles de los puntos de muestreo se han registrado incumplimientos de la concentración de nitratos de manera regular durante los años 2017-2018 y 2019 en dos de los puntos de control (AA00010064 y AA00010089), lo cual parece indicar que la contaminación causante de estos valores se encuentra localizada en el entorno de estos puntos. No obstante, se han observado puntualmente incumplimientos en los valores de cloruros de los puntos AA00010065 Y AA00010068 que conviene seguir para controlar su evolución.

1.5.3 ESTADO GLOBAL E IDENTIFICACIÓN DE IMPACTOS

ESTADO	ESTADO	ESTADO
CUANTITATIVO	QUÍMICO	FINAL
Bueno	Malo	Malo

Tabla nº 33. Evaluación del estado de la masa de agua subterránea

TIPO	DEFINICIÓN	DESCRIPCIÓN	PRESENCIA DE
1110	DEI INICION	DESCRIPCION	IMPACTO
ACID	Acidificación	Variaciones del pH. Sale del rango del	
ACID	Acidificación	bueno.	
CHEM	Contaminación química	Masa de agua en mal estado químico.	
ECOS	Afección a ecosistemas terrestres	Diagnóstico reporting Directiva hábitats	
ECUS	dependientes del agua subterránea	que evidencie este impacto.	
	Alteraciones de hábitat por cambios	Diagnóstico hidromorfológico de la masa	
HHYC	hidrológicos	de agua que evidencia impacto.	
	marotogicos	de agua que evidencia impacto.	
	Alteraciones de hábitat por cambios	Diagnóstico hidromorfológico de la masa	
НМОС	morfológicos incluida la conectividad	de agua que evidencie impacto.	
	g .		
	Alteraciones de la dirección del flujo por	Concentración de	
INTR	intrusión salina	cloruros/conductividad. Test de	
		intrusión.	
LITT	Acumulación de basura reconocida en las	Diagnóstico seguimiento Estrategias	
	Estrategias Marinas	Marinas	
LOWT	Descenso piezométrico por extracción	Masa de agua en mal estado cuantitativo	
	Describe processing per extraodicin	man de agai en mai estado daminidado	
MICR	Contaminación microbiológica	Incumplimiento Directivas baño y agua	
men	- Contamination microbiologica	potable	
NUTR	Contaminación por nutrientes	Diagnóstico N y P en la masa de agua,	Х
NOTR	Containinacion poi nutrientes	salen del rango del buen estado.	^

TIPO	DEFINICIÓN	DESCRIPCIÓN	PRESENCIA DE IMPACTO
ORGA	Contaminación orgánica	Condiciones de oxigenación, salen del rango del buen estado	
OTHE	Otro tipo de impacto significativo	Describir según el caso.	
QUAL	Disminución de la calidad del agua superficial asociada por impacto químico o cuantitativo	Diagnóstico del estado de la masa de agua superficial afectada	
SALI	Intrusión o contaminación salina	Concentración de cloruros/conductividad.	
TEMP	Elevación de la temperatura	Medición de la temperatura. No más de 3 °C en la zona de mezcla	
UNKN	Desconocido	Describir según el caso.	

Tabla nº 34. Impactos identificados en la masa de agua

1.6 MEDIDAS

Atendiendo a la tipificación de Presiones e Impactos que se incluye en el Anexo 1 de la Guía de Reporting 2016 (Comisión Europea, 2014), se muestran a continuación las presiones significativas identificadas en esta masa de agua, así como los impactos relacionados (Tabla nº 35):

ESTIMACIÓN DE PRESIONES RESPONSABLES	IMPACTOS IDENTIFICADOS
2.2 Contaminación por fuentes difusas-Agraria	NUTR – Contaminación por nutrientes

Tabla nº 35. Presiones significativas en la masa de agua subterránea

Por último, se recogen las medidas definidas frente a estas presiones (Tabla nº 36):

Título de la Medida

Control de las aplicaciones agrícolas de efluentes de almazara, lodos procedentes de Estaciones de Depuración de Aguas Residuales (EDAR) y residuos con código de valorización R10.

Incremento de los servicios de vigilancia del dominio público marítimo tererstre.

Mejora de la sostenibilidad ambiental de explotaciones agrarias (agroambiente y clima y producción ecológica): Apoyo a la implantación de las mejores técnicas disponibles (MTD) en las explotaciones agrícolas y ganaderas con objeto de reducir la generación de residuos:

Incentivos a las inversiones en medidas ambientales que supongan mejoras en la prevención y gestión.

Porcentaje mínimo de tierras de cultivo y cultivos permanentes dedicadas a superficies de interés ecológico.

Prohibición de quemas de rastrojos.

Servicios de asesoramiento a los agricultores.

Uso sostenible de fertilizantes.

Uso sostenible del agua de riego y mejora de su calidad.

Tabla nº 36. Medidas frente a presiones significativas en la masa de agua subterránea

1.7 ANÁLISIS DE RIESGO

Los principales problemas que presenta la masa de agua subterránea Lepe-Cartaya son:

Contaminación de nitratos por origen agrario. La fuerte presión de contaminación difusa (agricultura fundamentalmente) ligada a la presencia de importantes zonas de regadío provoca que se sobrepasen ampliamente los valores máximos permitidos de concentración de nitratos, con máximos que superan los 50 mg/l (Figura nº7). La presencia de concentraciones elevadas de nitratos en las masas de agua tiene efectos de diversa índole. Por un lado, el deterioro o contaminación de los recursos de las masas de agua subterráneas para abastecimiento urbano. Por otro lado, se trata de una

contaminación resistente y duradera, lo que dificulta la regeneración de las masas contaminadas para el cumplimiento de los objetivos medioambientales. Además, los ecosistemas terrestres dependientes de las aguas subterráneas podrían acabar viéndose afectados por la contaminación por nitratos vía surgencias y manantiales.

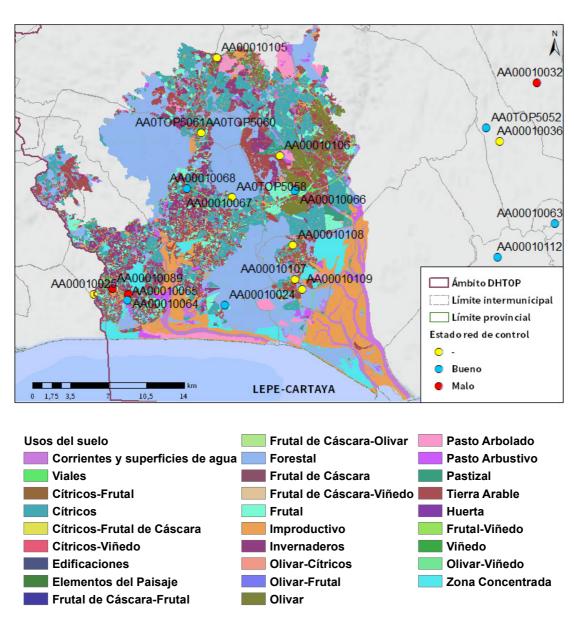
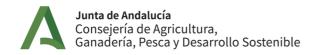


Figura nº7. Red de control y actividades agrícolas de la masa de agua Lepe-Cartaya

1.8 ANÁLISIS DE LA EVOLUCIÓN

En este apartado, se han estimado las tendencias evolutivas sobre el posible aumento de las concentraciones de los contaminantes, grupos de contaminantes o indicadores de contaminación, detectados en la masa de agua subterránea evaluada en riesgo de no alcanzar un buen estado químico.


La estimación de tendencias evolutivas se ha realizado para aquellos parámetros que hayan contribuido a la clasificación de la masa en riesgo. En este caso, los parámetros responsables de esta situación son los nitratos.

Los datos analíticos disponibles corresponden con los registrados en los puntos de muestreo que integran las redes de seguimiento de control de vigilancia y operativo desde 2009 a 2019. La evolución temporal de dichos registros analíticos se ha comparado con los valores paramétricos relativos a normas de calidad, teniendo en cuenta, siempre que exista disponibilidad, las concentraciones de referencia naturales (niveles de referencia) y los valores umbral.

Para el desarrollo de dicho análisis se han generado una serie de gráficos de evolución, en los cuales se ha representado de manera individualizada cada parámetro, en relación a cada estación que ha presentado incumplimientos de dicho parámetro. Asimismo, en dichos gráficos se han añadido los valores correspondientes a los niveles de referencia o normas de calidad.

El procedimiento empleado se basa en la representación gráfica de la evolución registrada para cada parámetro que haya contribuido a la clasificación en riesgo de las masas de agua subterránea. En dicho gráfico se han representado, por un lado, las líneas estáticas correspondientes a los respectivos niveles de referencia y las tendencias de las gráficas de evolución del parámetro analizado.

Durante los trabajos de seguimiento del estado de las masas de agua subterránea identificadas en la DHTOP, se llevó a cabo la identificación del riesgo de no alcanzar

los objetivos medioambientales fijados en el artículo 4 de la Directiva 2000/60/CE, en dichas masas. El resultado de estos trabajos establece que la masa de agua subterránea ES064MSBT000305940 Lepe - Cartaya presenta riesgo por contaminación difusa, en base a los valores de concentración de nitratos. Los siguientes gráficos muestran la evolución en aquellos puntos de muestreo identificados en la masa de agua que han presentado incumplimientos o que tienen antecedentes de incumplimientos en anteriores ciclos de planificación.

AA00010064: A pesar del mínimo registrado en 2014 de la concentración de nitratos en este punto de muestreo, toda la serie de datos excepto puntualmente en 2014 se encuentra por encima de los niveles normativos permitidos de 50 mg/l (Figura nº8). Esta estabilidad en los altos valores de nitrato implica la necesidad establecer medidas correctoras en el entorno de este punto para disminuir las concentraciones de nitrato de las aguas subterráneas.

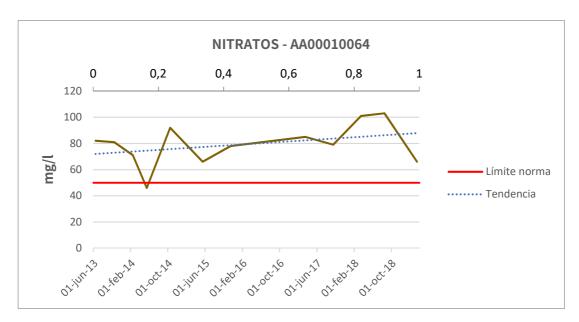


Figura nº8. Evaluación de los valores de nitrato en el punto de muestreo AA00010064

AA00010089: En este punto de muestreo se observa un notable descenso de la concentración de nitratos en 2019 hasta valores mínimos después de presentar los valores mas altos en los años 2013, 2014 y 2018. Los máximos valores de la concentración de nitratos entre 100-120 mg/l, junto con el descenso en los datos

PLAN HIDROLÓGICO 2021-27 – APÉNDICE 2

actuales recomiendan tanto implementar medidas para hacer descender los valores de nitrato en el futuro como hacer un seguimiento en este punto de muestreo para ver la evolución de esta situación (Figura nº9).

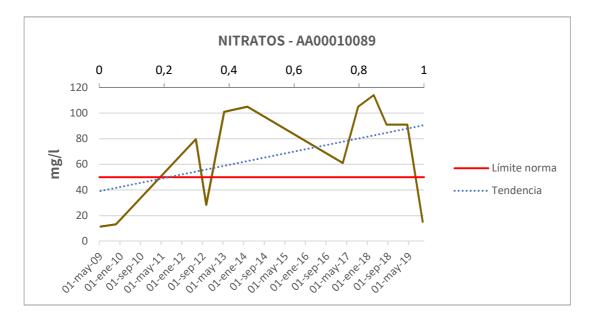


Figura nº9. Evaluación de los valores de nitrato en el punto de muestreo AA00010089

Aunque en la actualidad esta masa no presenta incumplimientos en el contenido de cloruros, los altos valores alcanzados por este parámetro en años anteriores han influido en la consideración del riesgo de esta masa y se han analizado en las gráficas siguientes los datos disponibles con la intención de estimar su evolución en el futuro.

En los puntos de muestreo AA00010065 y AA00010068 (Figura n°10 y Figura n°11) se observa una evolución similar del contenido en cloruros de las aguas subterráneas, con elevados valores comprendidos en el intervalo 500 - 600 mg/l entre los años 2012 y 2018, aunque hay que tener en cuenta la ausencia de datos en los años 2014, 2015 y 2016. Aunque la tendencia actual es descendente, se recomienda realizar un seguimiento para comprobar que la tendencia no se invierte. No se ha observado correlación de los valores de cloruros con la conductividad y no se puede precisar el origen artificial o natural de estas concentraciones.

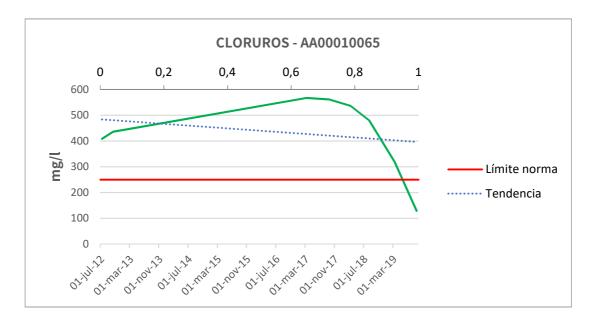


Figura nº10. Evolución de los valores de cloruro en el punto de muestreo AA00010065

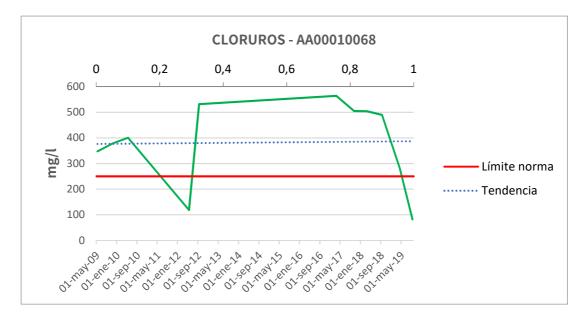


Figura nº11. Evolución de los valores de cloruro en el punto de muestreo AA00010068

AA00010089: En este punto de muestreo observamos una reducción del contenido en cloruros desde el año 2009 donde aparece el máximo valor de este parámetro con aproximadamente 400 mg/l (Figura nº12). No obstante, y a pesar de que esta zona no parece presentar un riesgo en la actualidad, la ausencia de datos en los años 2010, 2011, 2014, 2015 y 2016 reduce mucho el nivel de certidumbre de esta tendencia y, por lo tanto, se recomienda hacer el seguimiento de este punto de

muestreo con el fin de determinar una tendencia fiable en relación con este parámetro.

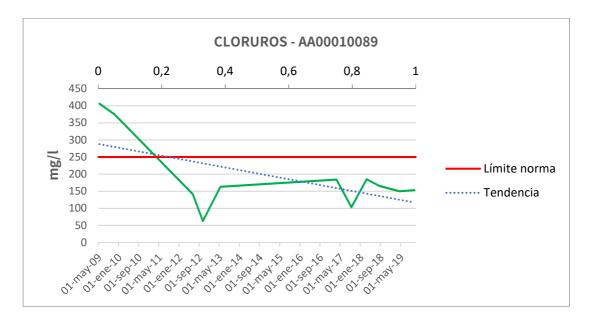


Figura nº12. Evolución de los valores de cloruro en el punto de muestreo AA00010089

Se debe mencionar, dentro de la posible contaminación por fitosanitarios, que ya se detecta en las redes de control de las aguas subterráneas la aparición de plaguicidas y herbicidas como el glifosato, los clorpirifos y la terbutilacina. Se ha estimado la situación del contenido de glifosato en la masa de agua subterránea a partir de la representación de aquellos valores que superan el valor de referencia normativo de $0,1~\mu g/l$. Se ha analizado la presencia de glifosato en la masa de agua subterránea por ser el tipo de herbicida más frecuentemente hallado en valores por encima tanto del umbral observable como del nivel de referencia ambiental.

Los valores más elevados de presencia de glifosatos por encima de 0,1 µg/l se encuentran focalizados en el año 2018 en todos aquellos puntos de control observados, se recomienda continuar con la observación de estos valores más detalladamente en el futuro para evaluar la evolución de esta situación (Figura nº13).

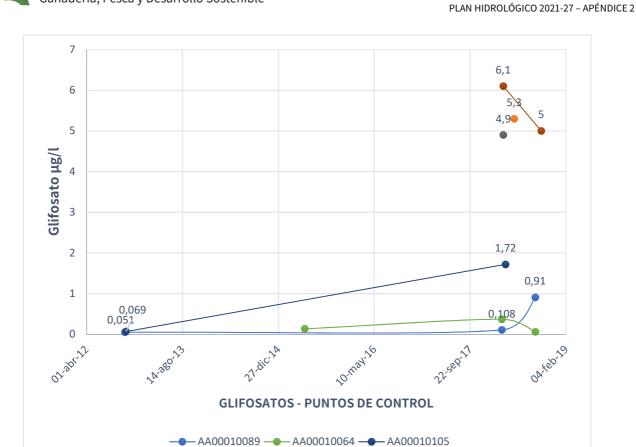


Figura nº13. Valores de la concentración de glifosatos en diferentes puntos de control de la masa de agua subterránea Lepe-Cartaya

► AA00010066 ← AA00010107 ← AA00010068

1 ES064MSBT000305950 CONDADO

1.1 INFORMACIÓN SOBRE LA MASA DE AGUA

UBICACIÓN	POBLACIÓN ASENTADA (N° HAB.)	MARCO GEOGRÁFICO (HIDROGRAFÍA)
Se sitúa en el extremo suroriental de la provincia de Huelva, en las comarcas de Condado de la Campiña y Condado Litoral. Limita al sur con el Océano Atlántico, al poniente con la Ría del Tinto, la divisoria de aguas entre los ríos Tinto y La Rocina conforma su límite al levante y en su límite norte se encuentran las poblaciones de Lucena del Puerto, Bonares y Villalba del Alcor (Figura n°1)	46.991	Río principal: Tinto.

Tabla nº 1. Información sobre la masa de agua de Condado

1.2 LOCALIZACIÓN GEOGRÁFICA Y ÁMBITO ADMINISTRATIVO

ÁMBITO ADMINISTRATIVO	LOCALIZACIÓN
Comunidad Autónoma	Andalucía
Distrito	Atlántico
Provincia	Huelva

Tabla nº 2. Localización geográfica de la masa de agua de Condado

1.2.1 TOPOGRAFÍA Y COORDENADAS DEL CENTROIDE

TOPOGRAFÍA					
Coordenadas del centroide (HUSO 30N)		Geom	netría	Altitud (m.s.n.m.)	
U.T.M. X (m)	U.T.M. Y (m)	Perímetro (km)	Superficie (km²)	Máxima	Mínima
156.157,3	4.125.571	207,62	282,78	200	0

Tabla nº 3. Topografía y coordenadas de la masa de agua Condado

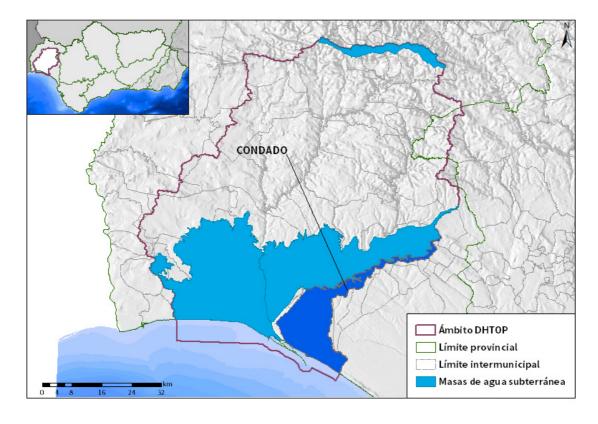



Figura nº1. Localización de la masa de agua Condado

1.2.2 REGISTRO DE ZONAS PROTEGIDAS

Código EU zonas protegidas	Nombre Captación	Tipo de captación	Coordenadas UTM X (m)	Coordenadas UTM Y (m)	Código SINAC ¹
ES064ZPROT6150020000002001914	Pozo 4 Mazagón	Sondeo	164.388	4.118.735	1914
ES064ZPROT6150020000002001915	Pozo 3 Mazagón	Sondeo	164.249	4.118.690	1915
ES064ZPROT6150020000002001916	Pozo 2 Mazagón	Sondeo	164.432	4.118.744	1916
ES064ZPROT6150020000002001917	Pozo 1 Mazagón	Sondeo	164.249	4.118.690	1917
ES064ZPROT6150010000009008202	Embalse del Piedras	Embalse	155609	4128735	8202

Tabla nº 4. Zonas protegidas para abastecimiento. Captaciones de aguas subterráneas.

ZONAS VULNERABLES						
		Superficie de espacio vulnerable (km²)				
Nombre	Total	Parte incluida en la	Porcentaje de la			
Total		masa	masa			
Zona 2 Valle del	8.620,23	12,78	4,52			
Guadalquivir	0.020,23	12,70	4,52			
Zona 23 Condado	207,8	173,37	61,31			
Zona 25 Niebla - Posadas	489,93	4,44	1,57			

Tabla nº 5. Zonas vulnerables a la contaminación por nitratos.

¹ Sistema de Información Nacional de Aguas de Consumo (SINAC). Ministerio de Sanidad, Consumo y Bienestar Social.

ZONAS PROTEGIDAS DE HÁBITAT O ESPECIES						
		Superficie de espacio protegido (km²)				
Nombre	Figura de protección	Total	Parte incluida en la masa		Porcentaje de la masa	
Marismas y riberas del Tinto	ZEC	30,16	<	1	<1	
Corredor ecológico del Río Tinto	ZEC	218,33	<	1	<1	
Doñana	ZEC	38,02	38,	,01	13,44	
Estero de Domingo Rubio	ZEPA	3,43	2,	76	0,97	
Estero de Domingo Rubio	LIC	3,43	2,	76	0,97	
Lagunas de Palos y las Madres	LIC	6,48	6,4	48	2,29	
Dunas del Odiel	LIC	0,64	0,0	64	0,22	
Doñana	ZEPA	1.282,67	38,	,01	13,44	
Dehesa del Estero y Montes de Moguer	LIC	29,18	29,	,18	10,32	
Espacio marino del Tinto y del Odiel	ZEPA	38,18	<1		<1	
HUMEDALES						
		Super	ficie del	humed	al (km²)	
Nombre	mbre Parte incluida en la masa			Porcentaje de la masa		
Estero Domingo	3,4306	2,76	76		0,97	

Rubio

Laguna Primera de Palos	0,1220	<1	<1
Laguna de la Jara	0,0662	<1	<1
Laguna de la Mujer	0,0735	<1	<1
Laguna de las Madres	1,2866	1,28	0,45
Lagunas del Abalario	112,8196	30,43	10,76
Laguna Dehesa del Estero	0,9028	<1	<1
Humedal Dunas del Odiel	0,5686	<1	<1
Marismas y Riberas del Tinto	30,1666	<1	<1

Tabla nº 6. Zonas de protección de hábitat o especies y humedales

1.2.3 POBLACIÓN ASENTADA

DATOS DEL PADRÓN REFERENTES AL NÚCLEO	POBLACIÓN ASENTADA DE DERECHO
DE:	2019
Bonares	6.081
Lucena del Puerto	3.507
Moguer	21.259
Moguer / Palos de la Frontera	2.153
Palos de la Frontera	10.780
Villalba del Alcor	3.206
Villarrasa	5
TOTAL	46.991

Tabla nº 7. Población asentada sobre la masa de agua subterránea

1.3 CARACTERÍSTICAS INTRÍNSECAS

1.3.1 CARACTERÍSTICAS GEOLÓGICAS E HIDROLÓGICAS GENERALES

Los principales niveles permeables que constituyen esta masa de agua son los limos arenosos y arenas del Plioceno, correspondiente a la unidad deltaica, las arenas y gravas del Pliocuaternario y, en la zona sureste, las arenas eólicas del Holoceno. Estos materiales constituyen un acuífero libre cuya base impermeable son las margas azules del Mioceno. Debajo de las margas azules se encuentran las calcarenitas, conglomerados y arenas del Mioceno que, por tanto, forman un acuífero confinado en continuidad con los mismos materiales de la masa de agua subterránea Niebla (acuífero detrítico basal).

La recarga del acuífero libre se produce fundamentalmente a partir de la infiltración de las precipitaciones.

1.3.1.1 ÁMBITO GEOESTRUCTURAL

MARCO GEOLÓGICO				
UNIDADES GEOLÓGICAS DE RANGO MAYOR				
	Depresiones Neógenas			
Origen	Fluvial			
Naturaleza Transgresivo marino				

Tabla nº 8. Unidades geológicas la masa de agua subterránea

1.3.1.2 DESCRIPCIÓN GEOLÓGICA

La masa de agua subterránea Condado se encuentra dentro de la denominada Unidad Hidrogeológica 5.51, la cual se encuadra en el borde sur-occidental de la Depresión del Guadalquivir. Está constituida por depósitos de origen marino, fluvial y eólico, estructurados en disposición horizontal.

Es un acuífero detrítico, permeable por porosidad primaria. Los niveles acuíferos principales son las arenas basales de Plioceno - Pliocuaternario, aunque existen otros niveles detríticos de menor importancia. Estas arenas basales actúan como acuífero libre en las áreas donde afloran, y como acuífero confinado cuando se encuentran bajo los materiales impermeables de las Marismas.

Las masas de agua subterránea de Condado tienen continuidad hidrogeológica con las masas de agua subterráneas de Almonte, Manto Eólico Litoral de Doñana y la Rocina, en la demarcación hidrográfica del Guadalquivir (Figura nº2).

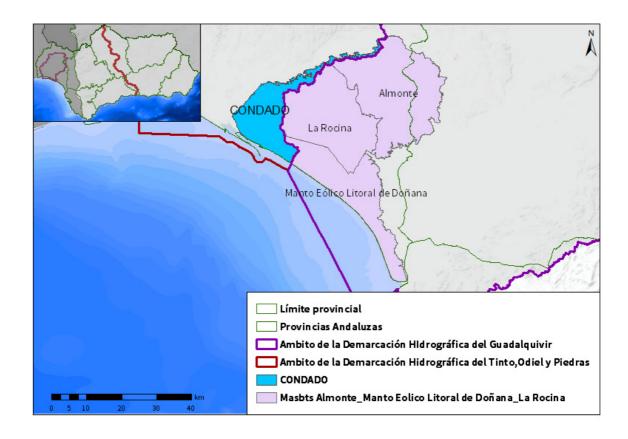


Figura nº2. Masas de agua subterránea compartidas con la demarcación Hidrográfica del Guadalquivir

1.3.1.3 COLUMNA LITOLÓGICA TIPO

ESTRATIGRAFÍA							
SÍNTES	SÍNTESIS DE UNIDADES LITOESTRATIGRÁFICAS						
Litología	Litología Extensión Potencia media						
	afloramiento (km²)	estimada (m)					
Dunas actuales y antiguas	10,46	0-2	Cuaternario				
Aluviales	10,42	_	Cuaternario				
Manto eólico	51,35	0,1-2	Cuaternario				
Terrazas	0,07	-	Cuaternario				
Conglomerados, gravas y	44.77	10-20	Cuaternario				
arenas ferruginosas	44,77	10-20	Cuaternano				
Arenas basales	102,02	0-150	Pliocuaternario				
Limos basales	EO 10	0.150	Mioceno				
Limos basales	59,18	0-150	(Andaluciense)				
Margas azulos	0,8	< 650	Mioceno				
Margas azules	0,0	~ 030	(Andaluciense)				

Tabla nº 9. Litología de la masa de agua subterránea

1.3.1.4 ESTRUCTURA

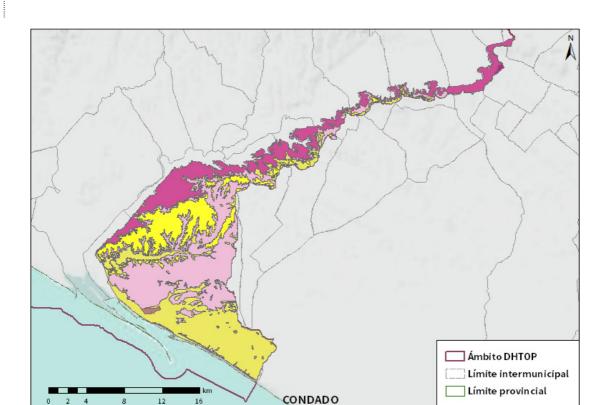


Figura nº3. Mapa de afloramientos litoestratigráficos de la masa de agua subterránea

1.3.1.5 TIPOLOGÍA HIDROLÓGICA GENERAL

DETRÍTICO	CARBONATADO	міхто	MIXTO Y OTROS	ACUÍFEROS LOCALES
Х				

Tabla nº 10. Tipología de la masa de agua subterránea

1.3.1.6 LÍMITES HIDROLÓGICOS DE LA MASA DE AGUA SUBTERRÁNEA

	ENCUADRE HIDROGEOLÓGICO						
	LÍMITES DE CONTORNO						
Norte	Cerrado	Hacia el norte	Litológico/Divisoria hidrográfica				
Sur	Abierto	Hacia el sur	Línea de costa				
Este	Cerrado	Hacia el oeste	Divisoria hidrográfica Tinto-Guadalquivir				
Oeste	Abierto	Hacia el oeste	Línea de costa				
Norte	Cerrado	Hacia el norte	Litológico/Divisoria hidrográfica				

Tabla nº 11. Límites hidrológicos de la masa de agua subterránea

1.3.1.7 ACUÍFEROS CONSTITUYENTES DE LA MASA DE AGUA SUBTERRÁNEA

ACUÍFEROS CONSTITUYENTES					
DESCRIPCIÓN					
Denominación Naturaleza Litología					
Mioceno de Base	Detrítico	Calcarenitas			
Pliocuaternario	Detrítico	Detrítico			

Tabla nº 12. Acuíferos de la masa de agua subterránea

1.3.1.8 ESPESOR SATURADO DE LOS ACUÍFEROS CONSTITUYENTES DE LA MASA DE AGUA SUBTERRÁNEA

GEOMETRÍA							
Denominación	Superficie aflorante (km²)	Potencia estimada (m)	Disposición				
Mioceno de base	_	5-25	Tabular				
Pliocuaternario	210,63	1-30	Aumenta de espesor hacia el sur				

Tabla nº 13. Espesor saturado de los acuíferos de la masa de agua subterránea

1.3.1.9 CARACTERÍSTICAS HIDRÁULICAS


FUNCIONAMIENTO						
Denominación Comportamiento Porosidad Permeabilidad (m/día)						
Mioceno de Base	Confinado	Intergranular	5-10			
Pliocuaternario	Libre	Intergranular	1-2			

Tabla nº 14. Características hidráulicas de la masa de agua subterránea

COEFICIENTE DE ALMACENAMIENTO						
Denominación	Valor de coeficiente de almacenamiento					
Denominación	Rango	Valor medio	Método de determinación			
Mioceno de Base	10-3-10-5	10-4	Bibliografía			
Pliocuaternario	10-3-10-4	5*10 ⁻³	Bibliografía			

Tabla nº 15. Características de almacenamiento de la masa de agua

1.3.2 ZONA NO SATURADA

1.3.2.1 POTENCIA NO SATURADA

ZONA NO SATURADA								
	ESPESOR							
Fecha	Valor	es (m.s.	n.m.)	Distribución espacial				
reciia	Máximo	Medio	Mínimo	Intervalo (m)	Porcentaje de masa			
				-	-			
1989-2003	10,79	7,19	7.10	-	-			
1909-2003	10,79	1,13 3,0	7,13	1,13	3,60	-	-	
					-	-		
				-	-			
2000-2006	10 34	10,34 6,91 4,63	6.01	C 01	6.01 4.62	4.62	-	-
2000-2000	10,57		7,03	-	-			
				-	-			

Tabla nº 16. Potencia de la zona no saturada de la masa de agua subterránea

1.3.2.2 EDAFOLOGÍA

SUELOS					
Tipología	Espesor medio (cm)	Extensión (%)			
Arenosol albico	-	32,47			
Planosol eutrico	-	32,43			
Regosol calcáreo	-	17,87			
Regosol districo	-	8,39			

SUELOS						
Tipología	Espesor medio (cm)	Extensión (%)				
Histosol eutrico	-	3,19				
Cambisol calcico	-	3,00				
Solonchak takiricos	-	2,63				
Regosol eutrico	-	0,01				
Fluvisol calcáreo	-	0,01				

Tabla nº 17. Edafología de la masa de agua subterránea

1.3.2.3 VULNERABILIDAD A LA CONTAMINACIÓN

VULNERABILIDAD A LA CONTAMINACIÓN							
	MÉTODO DRASTIC						
Clase	Clase Rango Superficie (km²) Extensión (%)						
Muy baja	1-2	11,35	4,11				
Ваја	3-4	88,79	32,16				
Moderada	5-6	135,15	48,94				
Alta	7-8	40,72	14,75				
Muy alta	-10	0,11	0,04				

Tabla nº 18. Vulnerabilidad de la masa de agua subterránea

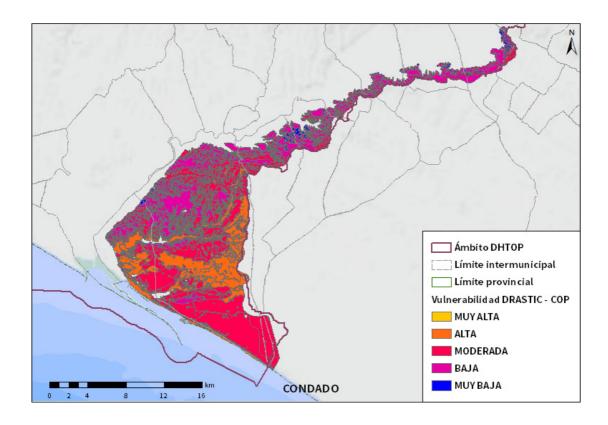
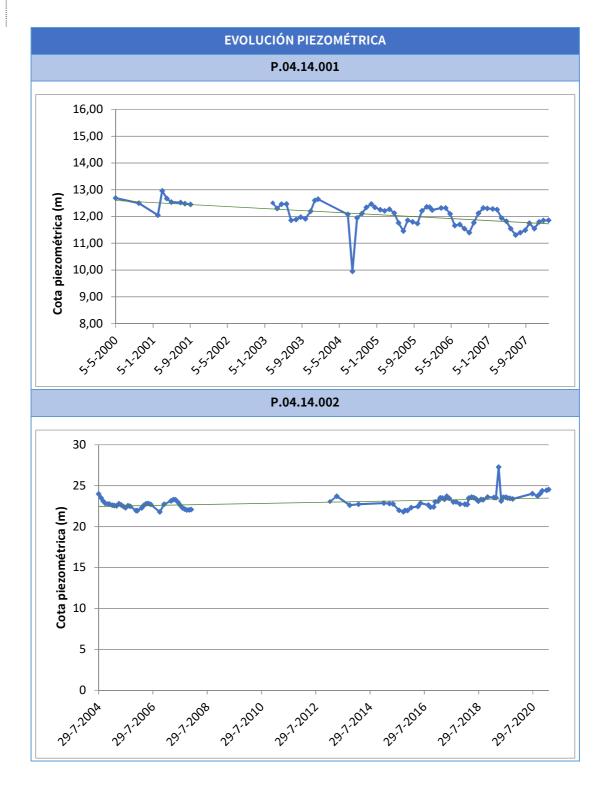
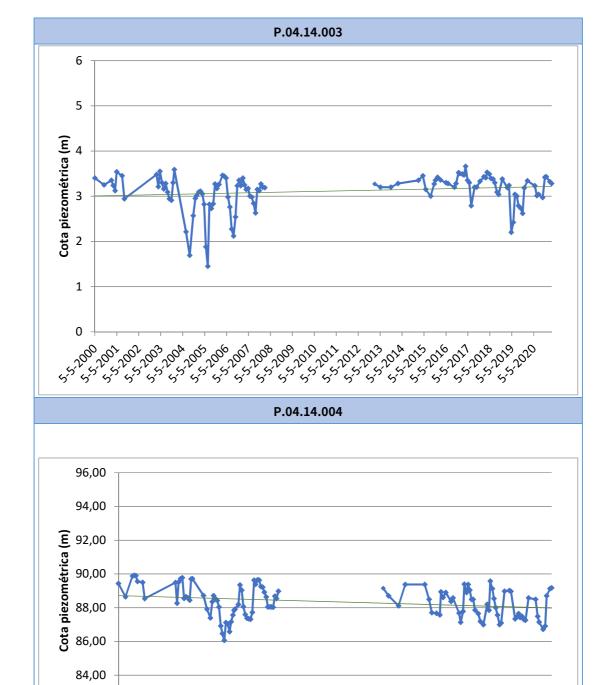


Figura nº4. Mapa de Vulnerabilidad de la masa de agua subterránea

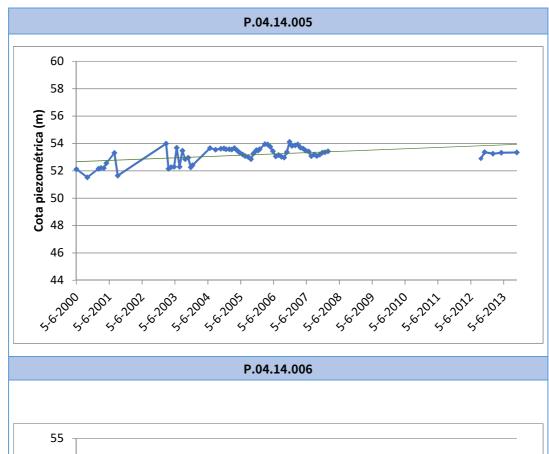
1.3.3 PIEZOMETRÍA Y VARIACIÓN DEL ALMACENAMIENTO


1.3.3.1 PUNTOS DE CONTROL Y CLASIFICACIÓN PIEZOMÉTRICA

PIEZOMETRÍA							
	PUNTOS DE CONTROL PIEZOMÉTRICO						
Código punto	Cota (m)	Coordenadas UTM (m)		Clasificación	Código masa		
		Х	Υ		Ü		
P.04.14.001	31	159.639	4.117.480	Estabilidad	ES064MSBT000305950		
P.04.14.002	29	155.934	4.129.104	Estabilidad	ES064MSBT000305950		
P.04.14.003	5	153.245	4.126.651	Estabilidad	ES064MSBT000305950		
P.04.14.004	91	166.725	4.131.944	Estabilidad	ES064MSBT000305950		
P.04.14.005	55	163.461	4.127.913	Estabilidad	ES064MSBT000305950		
P.04.14.006	49	164.527	4.123.640	Estabilidad	ES064MSBT000305950		
P.04.14.008	65	160.729	4.130.674	Estabilidad	ES064MSBT000305950		


Tabla nº 19. Puntos de control piezométrico de la masa de agua subterránea y estado

1.3.3.2 GRÁFICAS DE EVOLUCIÓN PIEZOMÉTRICA





82,00

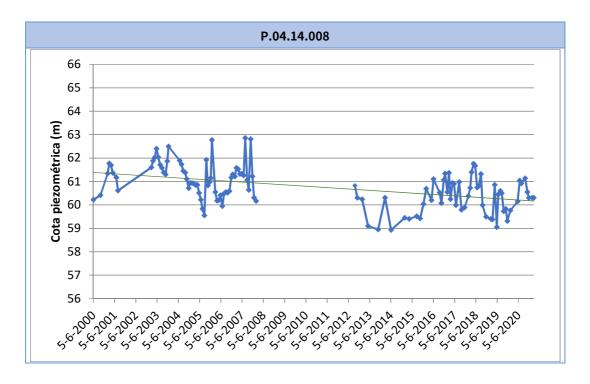


Figura nº5. Evolución piezométrica

De los siete piezómetros existentes en la masa, cinco de ellos se consideran más representativos ya que disponen de datos desde el año 2000 hasta la actualidad, aunque con ciertos vacíos en intervalos temporales. El piezómetro P.04.14.002 y presenta estabilidad desde 2012 y el piezómetro P.04.14.006 leves oscilaciones dentro de la estabilidad. Los piezómetros P.04.14.003, P.04.14.004 y P.04.14.008 presentan frecuentes irregularidades y oscilaciones que pueden ser de origen estacional. A pesar de este aspecto podemos considerar de manera general que se tiende a la estabilidad, pero se recomienda hacer un seguimiento de estas variaciones en el futuro.

1.3.3.3 MAPA DE ISOPIEZAS Y PERMEABILIDADES

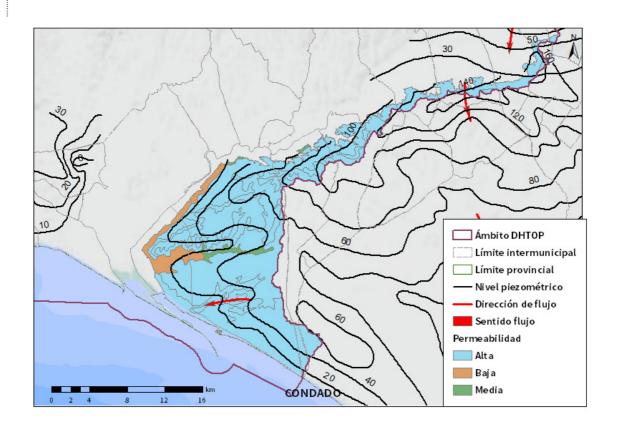


Figura nº6. Mapa de isopiezas y de permeabilidades de Andalucía (2006)

1.3.4 CONEXIÓN CON CURSOS DE AGUA Y ZONAS HÚMEDAS

1.3.4.1 DEPENDENCIA DE ECOSISTEMAS ACUÁTICOS

LUMEDALEC	DEPENDENCIA DE TRAMOS FLUVIALES			
HUMEDALES	EN LA MASA	FUERA DE LA MASA		
SI	NO	SI		

Tabla nº 20. Dependencia con ecosistemas acuáticos en la masa de agua subterránea

TRAMOS FLUVIALES ASOCIADOS					
Nombre de la masa	Categoría	Coeficiente de reparto			
Río Tinto	Río	0,66			
Arroyo Giraldo II	Río	0,08			

Tabla nº 21. Tramos fluviales dependientes de la masa de agua

HUMEDALES DEPENDIENTES					
	Sup	erficie del humed	al (km²)		
Nombre	Total	Parte incluida	Porcentaje de		
	Total	en la masa	la masa		
Laguna de La Jara	Lago	0,07	0,07		
Laguna de La Mujer	Lago	0,07	0,07		
Laguna de Las Madres	Lago	0,87	0,87		
Laguna Primera de palos	Lago	0,12	0,12		

Tabla nº 22. Humedales dependientes de la masa de agua

1.3.4.2 DESCRIPCIÓN Y OBSERVACIONES

MASAS DE AGUA SUPERFICIALES UBICADAS SOBRE LA MASA SUBTERRÁNEA						
Nombre de la masa	Categoría	Long. Total (km)	Long. Incluida en la masa (km)			
Laguna de La Jara	Lago	0,07	0,07			
Laguna de La Mujer	Lago	0,07	0,07			
Laguna de Las Madres	Lago	0,87	0,87			
Laguna Primera de palos	Lago	0,12	0,12			
Mazagón – Límite Demarcación Tinto / Odiel / Guadalquivir	Costera	12,79	-			
1.500 m antes de la punta del espigón de Huelva – Mazagón	Costera	13,53	-			
Rio Tinto II (Moguer)	Transición	19,79	-			
Canal del Padre Santo 1	Transición	11,46	0,15			
Río Tinto I (Palos de la Frontera)	Transición	16,55	3,32			

Tabla nº 23. Masas de agua en la superficie de la masa de agua subterránea

1.3.5 FLUJOS

1.3.5.1 RECARGA

Entradas a las masas de agua (hm³/año)					
Acuífero	Infiltración por lluvia	Retornos procedentes de riego	Otras entradas	Recurso disponible (hm³/año)	
Condado	22	3,3	0	17,7	

Tabla nº 24. Recarga de la masa de agua subterránea

1.3.5.2 DESCARGA

La descarga se produce de forma natural hacia acuíferos contiguos mediante descargas laterales.

1.3.5.3 RECARGA ARTIFICIAL

No se realiza ningún tipo de recarga artificial en esta masa de agua

1.4 PRESIONES

1.4.1 EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS

1.4.1.1 EXTRACCIONES A PARTIR DEL ANÁLISIS DE USOS Y DEMANDAS

VOLUMEN ANUAL EXTRAÍDO						
Abastecimiento (hm³)	Agrícola (hm³)	Industrial (hm³)	Golf (hm³)	Ganadería (hm³)	Trasvase (hm³)	TOTAL (hm³)
0	3,92	0	0	0	0,53	4,45

Tabla nº 25. Extracciones en la masa de agua subterránea

1.4.2 OCUPACIÓN GENERAL DEL SUELO

1.4.2.1 DISTRIBUCIÓN SEGÚN EL SISTEMA DE INFORMACIÓN GEOGRÁFICA DE PARCELAS AGRÍCOLAS DE ANDALUCÍA (2019)

TIPO	SUPERFICIE (ha)	SUPERFICIE (%)
Forestal	11.232,31	39,86
Invernaderos	4.995,43	17,73
Tierra Arable	3.342,44	11,86
Improductivo	2.190,49	7,77
Zona Urbana	1.313,15	4,66

TIPO	SUPERFICIE (ha)	SUPERFICIE (%)
Pasto Arbustivo	1.255,58	4,46
Olivar	936,55	3,32
Frutal	766,88	2,72
Viales	555,16	1,97
Pasto Arbolado	478,22	1,70
Pastizal	278,91	0,99
Cítricos	258,48	0,92
Viñedo	231,91	0,82
Corrientes y superficies de agua	204,92	0,73
Frutal de Cáscara	83,66	0,30
Edificaciones	15,97	0,06
Olivar-Viñedo	13,89	0,05
Frutal-Viñedo	13,18	0,05
Huerta	5,50	0,02
Frutal de Cáscara-Olivar	2,56	0,01
Elemento del Paisaje	0,89	0
Frutal de Cáscara-Frutal	0,70	0
Frutal de Cáscara-Viñedo	0,53	0
Olivar-Frutal	0,49	0
Cítricos-Frutal	0,48	0
Cítricos-Viñedo	0,29	0
Olivar-Cítricos	0,19	0

Nota: Los valores nulos de la columna de superficie son valores muy bajos casi nulos. La suma de la superficie en porcentaje no es 100 dada la falta de estos valores nulos

Tabla nº 26. Distribución de usos del suelo según el Sistema de Información Geográfica de Parcelas Agrícolas de Andalucía (SIGPAC 2019)

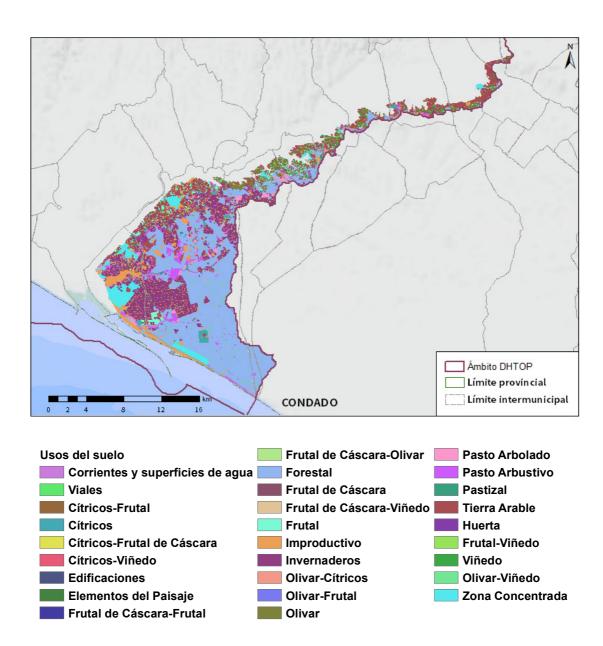




Figura nº7. Mapa de distribución de usos del suelo según el Sistema de Información Geográfica de Parcelas Agrícolas de Andalucía (SIGPAC 2019)

1.4.3 PRESIÓN PUNTUAL

		Valo	oración de la pres			
Tip	Descripción	(nº de en	nplazamientos er	Densida		
0	de fuente puntual	Potencialment e muy importante	Potencialment e Importante	Potencialment e no importante	d	Valoración
1.1	Aguas residuales urbanas	>1	0,2 - 1	< 0,2	0,04	No importante
1.2	Aliviaderos	> 1	0,2 - 1	< 0,2	-	Sin presión
1.3	Plantas IED	> 1	0,2 - 1	< 0,2	-	Sin presión
1.4	Plantas no IED	>1	0,2 - 1	< 0,2	-	Sin presión
1.5	Suelos contaminado s / Zonas industriales abandonada s	>1	0,2 - 1	< 0,2	-	Sin presión
1.6	Zonas para eliminación de residuos	> 0,5	0,1 - 0,5	< 0,1	-	Sin presión
1.7	Aguas de minería	>1	0,2 - 1	< 0,2	-	Sin presión
1.8	Acuicultura	> 1	0,2 - 1	< 0,2	-	Sin presión
1.9	Otras	> 2	0,5 - 2	< 0,5	0,3	No importante

Tabla nº 27. Presiones puntuales en la masa de agua subterránea

1.4.4 PRESIÓN DIFUSA

		Valo				
Tip	Descripción	(% d e	la superficie ocu	pada)	Densida	
o	de fuente difusa	Potencialment e muy importante	Potencialment e Importante	Potencialment e no importante	d	Valoración
2.1	Escorrentía urbana / alcantarillad o	> 10 %	2 – 10 %	< 2 %	5,17%	Importante
2.2	Agricultura	> 30 %	10 – 30 %	< 10 %	37,4%	Muy importante
2.3	Forestal	> 10 %	2 – 10 %	< 2 %	-	Sin presión
2.4	Transporte	> 2 %	1 – 2 %	< 1 %	1,40%	Importante
2.5	Suelos contaminado s / Zonas industriales abandonadas	> 2 %	1 – 2 %	< 1 %	-	Sin presión
2.6	Vertidos no conectados a la red de saneamiento	> 2 %	1 – 2 %	< 1 %	-	Sin presión
2.7	Deposición atmosférica	> 2 %	1 – 2 %	<1%	-	Sin presión
2.8	Minería	> 2 %	1 – 2 %	< 1 %	1,70%	Importante
2.9	Acuicultura	> 2 %	1 – 2 %	< 1 %	-	Sin presión

	Descrip	N(t/año)						
Tipo	ción de fuente difusa	Muy importa nte	Importante	Moderadam ente importante	Moder ada	No importante	Densidad	Valoración
2.10	Otras (ganad ería)	>150	75-150	50-75	25-50	<25	1,63	No importante

Tabla nº 28. Presiones difusas de la masa de agua subterránea

1.5 ESTADO E IMPACTOS

La actividad agrícola presente en la zona ha propiciado que esta masa de agua subterránea sea susceptible de sufrir contaminación por nitratos procedentes de fertilizantes y otros medios de producción agrarios. De acuerdo con las analíticas realizadas en esta masa de agua en los últimos cuatro años (2016-2019), se han alcanzado concentraciones máximas de nitratos de 137 mg/l en el año 2019, incumpliendo así el objetivo medioambiental de tener concentraciones inferiores a los 50 mg/l.

1.5.1 EVALUACIÓN DEL ESTADO CUANTITATIVO

4,45	17,7	25	Bueno
(hm³/año)	(hm³/año)	ESTIMADO (%)	COANTITATIVO
EXTRAÍDO	DISPONIBLES	EXPLOTACIÓN	CUANTITATIVO
VOLUMEN	RECURSOS	ÍNDICE DE	ESTADO

Tabla nº 29. Estado cuantitativo de la masa de agua subterránea

Un IE igual o superior a 80%, es indicativo de que las extracciones de agua suponen una presión importante para la masa de agua. Por encima de este valor se considera que la masa de agua está en mal estado cuantitativo. En concreto en esta masa de agua se observa un IE del 25% lo que potencialmente significa un riesgo bajo a la sobreexplotación.

1.5.2 EVALUACIÓN DEL ESTADO QUÍMICO

1.5.2.1 NORMAS DE CALIDAD Y VALORES UMBRAL

PARÁMETROS NORMAS DE CALIDAD

Conductividad (in situ) (20°C)	2.500 μs/cm
Cloruros	250 mg/l
Nitratos	50 mg/l
Arsénico	10 μg/l
Fluoruros	1,5 mg/l

Tabla nº 30. Valores umbrales para contaminantes

1.5.2.2 RED DE CONTROL DE DIAGNÓSTICO

CÓDIGO	COORDENADA UTM X (m)	COORDENDA UTM Y (m)
AA00010090	162.195	4.128.690
AA00010091	160.981	4.121.063
AA00010092	162.865	4.118.819
AA00010093	157.797	4.119.796
AA00010094	155.774	4.122.693
AA00010111	158.525	4.129.591
AA00010112	160.693	4.133.501
AA00010113	173.837	4.135.657
AA0TOP5053	165.775	4.116.641
AA0TOP5054	165.562	4.117.277
AA0TOP5055	164.394	4.118.725
AA0TOP5059	165.876	4.128.744
AA0TOP5060	133.264	4.144.981

Tabla nº 31. Puntos de la red de control de calidad en la masa de agua subterránea

1.5.2.3 ESTADO QUÍMICO

Se ha comprobado que las sustancias activas de los plaguicidas, incluidos los metabolitos y los productos de degradación y reacción que sean pertinentes no superen el $0,1\,\mu\text{g/l}$ (referido a cada sustancia) y el $0,5\,\mu\text{g/l}$ (referido a la suma de todos los plaguicidas detectados y cuantificados en el procedimiento de seguimiento año 2018).

Los resultados obtenidos en cada punto de control (medias anuales 2019) han sido los siguientes (Tabla nº 32):

PLAN HIDROLÓGICO 2021-27 – APÉNDICE 2

PUNTO DE		ΓΙVIDAD (IN °C) (μs/cm)	Cl (m	g/l)	NO	(mg/l)	As (µ	ıg/l)	F (mg/l)	Plaguicidas total (μg/l)	ESTADO
CONTROL	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	QUÍMICO
AA00010090	-	-	-	-	-	-	-	-	-	-	-	-
AA00010091	693	693	58	58	87	87	-	-	-	-	0,054	Malo
AA00010092	1.021	1.169	219,5	222	24,2	31,6	-	-	-	-	0,054	Bueno
AA00010093	609	628	44	65	62,5	88	-	-	-	-	0,054	Malo
AA00010094	700	710	44,8	62	76,5	105	-	-	-	-	0,054	Malo
AA00010111	1.235	1.307	119,5	131	104	147	-	-	-	-	0,054	Malo
AA00010112	1.983	2.000	150	202	44,7	60	-	-	-	-	0,054	Bueno
AA00010113	538	583	32,2	37,5	4,14	6,7	-	-	-	-	0,056	Bueno
AA0TOP5053	128,0	128,00	30,8	30,8	3,6	3,6	0,24	0,24	0,09	0,09	0,054	Bueno
AA0TOP5054	-	-	-	-	-	-	-	-	-	-	-	-
AA0TOP5055	-	-	-	-	-	-	-	-	-	-	-	-
AA0TOP5059	1.136,0	1.170,00	127,5	154	137	166	-	-	-	-	0,055	Malo
AA0TOP5060	-	-	-	-	-	-	-	-	-	-	-	-
Media	7	00	58		6	52,5	0,2	24	C	,09	0,05	
Máximo	2.0	000	222	2	1	166	0,2	24	C	,09	0,056	

Nota: (Cl) cloruros; (NO) nitratos; (As) Arsénico; (F) Fluoruros

Tabla n° 32. Red calidad y diagnóstico

Esta masa de agua presenta 9 puntos de muestreo con disponibilidad de datos y en 5 de ellas se han registrado valores de concentración de nitratos que superan las normas de calidad ambiental lo que indica el tipo de problemática presente en esta masa de agua. Los incumplimientos alcanzados se han producido de manera regular en estas estaciones durante los años 2017-2018-2019 siendo los máximos valores de concentración de nitratos alcanzados en el entorno del punto de control AAOTOP5059 con valores frecuentemente por encima de 100 mg/l.

1.5.3 ESTADO GLOBAL E IDENTIFICACIÓN DE IMPACTOS

ESTADO	ESTADO	ESTADO
CUANTITATIVO	QUÍMICO	FINAL
Bueno	Malo	

Tabla nº 33. Evaluación del estado de la masa de agua subterránea

TIPO	DEFINICIÓN	DESCRIPCIÓN	PRESENCIA DE IMPACTO
ACID	Acidificación	Variaciones del pH. Sale del rango del bueno.	
CHEM	Contaminación química	Masa de agua en mal estado químico.	
ECOS	Afección a ecosistemas terrestres dependientes del agua subterránea	Diagnóstico reporting Directiva hábitats que evidencie este impacto.	
ННҮС	Alteraciones de hábitat por cambios hidrológicos	Diagnóstico hidromorfológico de la masa de agua que evidencia impacto.	
нмос	Alteraciones de hábitat por cambios morfológicos incluida la conectividad	Diagnóstico hidromorfológico de la masa de agua que evidencie impacto.	
INTR	Alteraciones de la dirección del flujo por intrusión salina	Concentración de cloruros/conductividad. Test de intrusión.	
LITT	Acumulación de basura reconocida en las Estrategias Marinas	Diagnóstico seguimiento Estrategias Marinas	
LOWT	Descenso piezométrico por extracción	Masa de agua en mal estado cuantitativo	
MICR	Contaminación microbiológica	Incumplimiento Directivas baño y agua potable	

Pág. 33 de 46

TIPO	DEFINICIÓN	DESCRIPCIÓN	PRESENCIA DE IMPACTO
NUTR	Contaminación por nutrientes	Diagnóstico N y P en la masa de agua, salen del rango del buen estado.	Х
ORGA	Contaminación orgánica	Condiciones de oxigenación, salen del rango del buen estado	
OTHE	Otro tipo de impacto significativo	Describir según el caso.	
QUAL	Disminución de la calidad del agua superficial asociada por impacto químico o cuantitativo	Diagnóstico del estado de la masa de agua superficial afectada	
SALI	Intrusión o contaminación salina	Concentración de cloruros/conductividad.	
TEMP	Elevación de la temperatura	Medición de la temperatura. No más de 3 °C en la zona de mezcla	
UNKN	Desconocido	Describir según el caso.	

Tabla nº 34. Impactos identificados en la masa de agua

1.6 MEDIDAS

Atendiendo a la tipificación de Presiones e Impactos que se incluye en el Anexo 1 de la Guía de Reporting 2016 (Comisión Europea, 2014), se muestran a continuación las presiones significativas identificadas en esta masa de agua, así como los impactos relacionados (Tabla nº 35):

ESTIMACIÓN DE PRESIONES RESPONSABLES	IMPACTOS IDENTIFICADOS
2.2-Contaminación por fuentes difusas-Agraria	NUTR – Contaminación por nutrientes

Tabla nº 35. Presiones significativas en la masa de agua subterránea

Por último, se recogen las medidas definidas frente a estas presiones (Tabla nº 36):

Título de la Medida

Control de las aplicaciones agrícolas de efluentes de almazara, lodos procedentes de Estaciones de Depuración de Aguas Residuales (EDAR) y residuos con código de valorización R10.

Incremento de los servicios de vigilancia del dominio público marítimo tererstre.

Mejora de la sostenibilidad ambiental de explotaciones agrarias (agroambiente y clima y producción ecológica): Apoyo a la implantación de las mejores técnicas disponibles (MTD) en las explotaciones agrícolas y ganaderas con objeto de reducir la generación de residuos:

Incentivos a las inversiones en medidas ambientales que supongan mejoras en la prevención y gestión.

Porcentaje mínimo de tierras de cultivo y cultivos permanentes dedicadas a superficies de interés ecológico.

Prohibición de quemas de rastrojos.

Servicios de asesoramiento a los agricultores.

Uso sostenible de fertilizantes.

Uso sostenible del agua de riego y mejora de su calidad.

Tabla nº 36. Medidas frente a presiones significativas en la masa de agua subterránea

1.7 ANÁLISIS DE RIESGO

Los principales problemas que amenazan el buen estado de la masa de agua subterránea Condado son:

Contaminación por nitratos. La actividad agrícola y urbana presente en la zona ha propiciado que la masa de agua subterránea sea susceptible de sufrir contaminación por estos parámetros procedentes de fertilizantes, otros medios de producción agrarios y por las aguas residuales de origen urbano. De acuerdo con las analíticas realizadas en esta masa de agua en los últimos años, se han alcanzado concentraciones máximas de nitratos con valores de más de 100 mg/l, con el consecuente incumplimiento de las normas de

calidad ambiental vigentes cuyo valor límite se sitúa en 50 mg/l (Figura nº8). La presencia de concentraciones elevadas de nitratos en las masas de agua tiene efectos de diversa índole. Por un lado, el deterioro o contaminación de los recursos de las masas de agua subterráneas para abastecimiento urbano. Por otro lado, se trata de una contaminación resistente y duradera, lo que dificulta la regeneración de las masas contaminadas para el cumplimiento de los objetivos medioambientales. Además, los ecosistemas terrestres dependientes de las aguas subterráneas podrían acabar viéndose afectados por la contaminación por nitratos vía surgencias y manantiales.

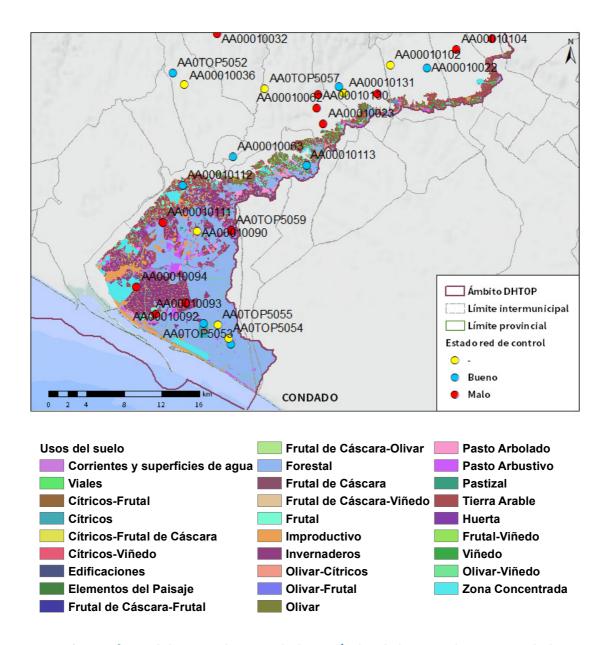


Figura nº8. Red de control y actividades agrícolas de la masa de agua Condado.

1.8 ANÁLISIS DE LA EVOLUCIÓN

En este apartado, se han estimado las tendencias evolutivas sobre el posible aumento de las concentraciones de los contaminantes, grupos de contaminantes o indicadores de contaminación, detectados en la masa de agua subterránea evaluada en riesgo de no alcanzar un buen estado químico.

La estimación de tendencias evolutivas se ha realizado para aquellos parámetros que hayan contribuido a la clasificación de las masas en riesgo. En este caso, el parámetro responsable de tal situación es el nitrato.

Los datos analíticos disponibles corresponden con los registrados en los puntos de muestreo que integran las redes de seguimiento de control de vigilancia y operativo desde 2009 a 2019. La evolución temporal de dichos registros analíticos se ha comparado con los valores paramétricos relativos a normas de calidad, teniendo en cuenta, siempre que exista disponibilidad, las concentraciones de referencia naturales (niveles de referencia) y los valores umbral.

Para el desarrollo de dicho análisis se han generado una serie de gráficos de evolución, en los cuales se ha representado de manera individualizada cada parámetro, en relación a cada estación que ha presentado incumplimientos de dicho parámetro. Asimismo, en dichos gráficos se han añadido los valores correspondientes a los niveles de referencia o normas de calidad.

El procedimiento empleado se basa en la representación gráfica de la evolución registrada para cada parámetro que haya contribuido a la clasificación en riesgo de las masas de agua subterránea. En dicho gráfico se han representado, por un lado, las líneas estáticas correspondientes a los respectivos niveles de referencia y las tendencias de las gráficas de evolución del parámetro analizado.

Durante los trabajos de caracterización adicional de las masas de agua subterránea identificadas en la DHTOP, se llevó a cabo la identificación del riesgo de no alcanzar

los objetivos medioambientales fijados en el artículo 4 de la Directiva 2000/60/CE, en dichas masas. El resultado de estos trabajos establece que la masa de agua subterránea ES064MSBT000305950 Condado presenta riesgo por contaminación difusa, en base a los valores de concentración de nitratos. Los siguientes gráficos muestran la evolución en aquellos puntos de muestreo identificados en la masa de agua que han presentado incumplimientos o que tienen antecedentes de incumplimientos en anteriores ciclos de planificación.

Los puntos de muestreo AA00010091 y AA00010094, localizado hacia el sur y el suroeste de la masa respectivamente, presentan una variación estacional en 2017 (Figura n°10) a lo largo del periodo registrado y máximos valores en 2018 con 175 y 115 mg/l respectivamente (Figura n°9). Presentan valores comprendidos entre los 60 mg/l en 2012 hasta los 175 mg/l registrados en 2018. Esta situación ha provocado que las concentraciones de nitratos superen el valor de referencia normativo de 50 mg/l, prácticamente de manera continua, por lo que se recomienda adoptar las medidas oportunas para reducir la concentración de nitratos por debajo del punto de referencia.

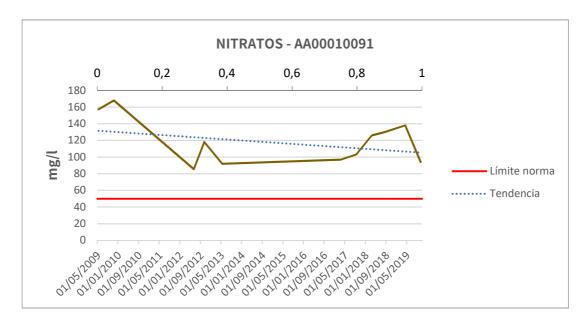


Figura nº9. Evolución de los valores de nitratos en el punto de muestreo AA00010091

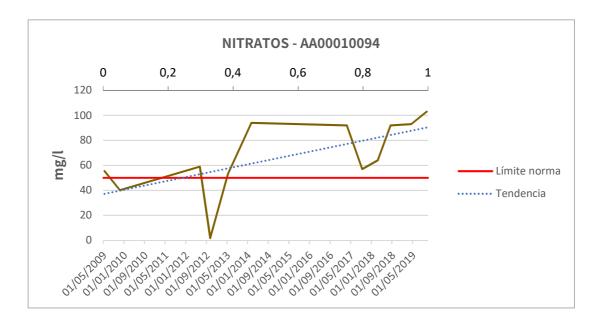


Figura nº10. Evolución de los valores de nitratos en el punto de muestreo AA00010094

A la vista de los resultados, se observa una regularidad de presencia de valores por encima de los 50 mg/l y un descenso en el año 2019 (Figura nº11). Presenta valores comprendidos entre los 30 mg/l en 2009 hasta casi 85 mg/l registrados en 2018; Esta situación ha provocado que las concentraciones de nitratos superen el valor de referencia normativo de 50 mg/l prácticamente de manera continua por lo que se

recomienda adoptar las medidas oportunas para reducir la concentración de nitratos por debajo de este punto de referencia.

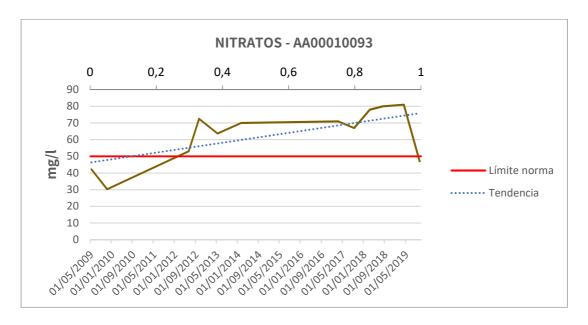


Figura nº11. Evolución de los valores de nitratos en el punto de muestreo AA00010093

El punto de muestreo AA0TOP5059 presenta datos únicamente desde 2013 hasta 2019 (Figura nº12). A la vista de los resultados, la magnitud de los valores va desde los 110 mg/l en 2105 y 2019 hasta los casi 225 mg/l de máximo histórico en 2015, momento en que la concentración de nitratos cuadruplica el valor de referencia establecido por la norma (50 mg/l). Esta situación (crítica), obliga a establecer un programa de medidas con carácter de urgencia, con objeto de invertir la situación y reducir la concentración por debajo de 50 mg/l.

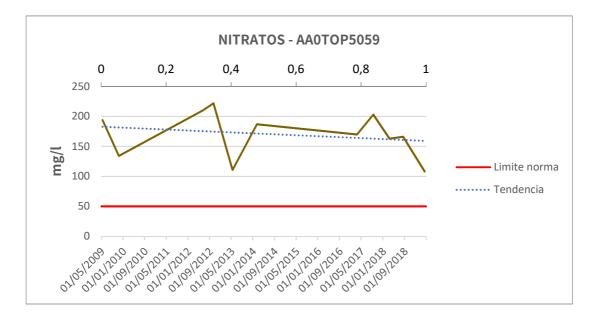


Figura nº12. Evolución de los valores de nitrato en el punto de muestreo AA0TOP5059

Las variaciones estacionales en 2017 y 2018 hacen que no se pueda interpretar situación del contenido en nitratos de manera fiable (Figura nº13 y Figura nº14). Por tanto, y dados los elevados valores registrados en ambos puntos de muestreo de manera sistemática, se recomienda seguir dos líneas de actuación, por un lado, hacer un seguimiento continuado de la estación para aumentar la fiabilidad de la evolución y, por otro lado, establecer un programa de medidas para reducir la concentración de nitratos por debajo de 50 mg/l en el entorno de la estación.

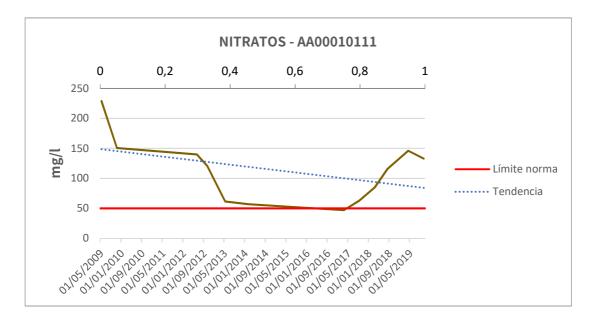


Figura nº13. Evolución de los valores de nitrato en el punto de muestreo AA00010111

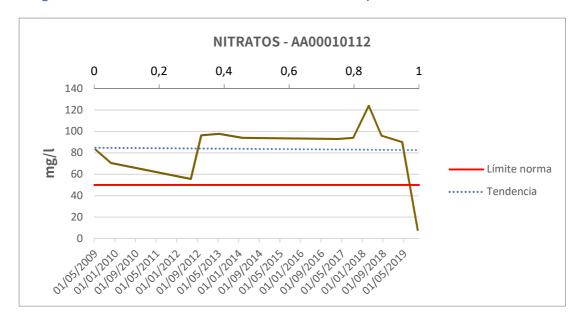


Figura nº14. Evolución de los valores de nitrato en el punto de muestreo AA00010112

Dado que esta masa se ha encontrado afectada por contaminación por nitritos de origen agrario en ciclos anteriores, se ha considerado relevante este aspecto y se ha realizado un seguimiento de los datos de este parámetro, aunque en la actualidad no parece presentar una considerable problemática.

Como se ha mencionado anteriormente y se puede observar en los gráficos (Figura nº15 y Figura nº16), los valores de concentración de nitritos alcanzaron niveles

problemáticos en el primer ciclo de planificación (2009-2015), valores que desde entonces se han venido reduciendo progresivamente con la aplicación de medidas, hasta estabilizarse en valores considerablemente inferiores al límite de referencia. Se recomienda hacer un seguimiento de este aspecto para asegurar que la tendencia se mantiene.

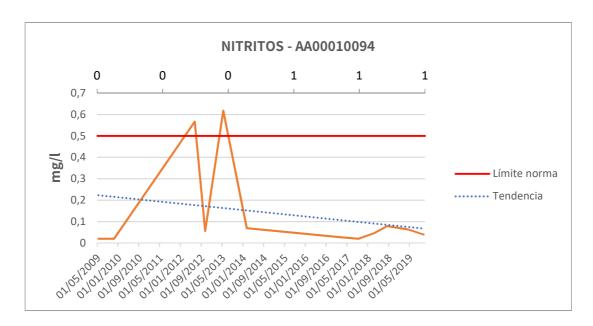


Figura nº15. Evolución de los valores de nitritos en el punto de muestreo AA00010094



Figura nº16. Evolución de los valores de nitritos en el punto de muestreo AA00010111

Se debe mencionar, dentro de la posible contaminación por fitosanitarios, que ya se detecta en las redes de control de las aguas subterráneas la aparición de plaguicidas y herbicidas como el glifosato, los clorpirifos y la terbutilacina. Se ha estimado la situación del contenido de glifosato en la masa de agua subterránea a partir de la representación de aquellos valores que superan el valor de referencia normativo de $0,1~\mu g/l$. Se ha analizado la presencia de glifosato en la masa de agua subterránea por ser el tipo de herbicida más frecuentemente hallado en valores por encima tanto del umbral observable como del nivel de referencia ambiental.

En todos los puntos de control analizados se observa de manera general una elevada presencia de glifosatos por encima de $0,1~\mu g/l$ en el año 2018 con la excepción del punto de control AA00010093 que presenta un mínimo en el mismo año. Esta situación se recomienda analizar detalladamente en el futuro para comprobar si su evolución continua o se invierte como en el caso de los puntos de control AA00010090 y AA00010113 con un descenso hasta valores aproximados al $0,1~\mu g/l$ (Figura n°17).

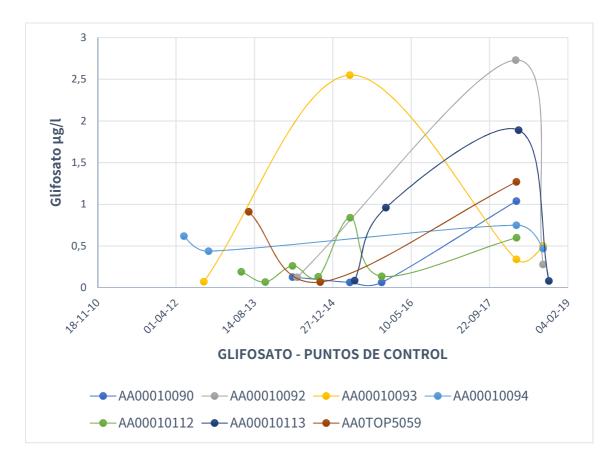


Figura nº17. Valores de la concentración de glifosatos en diferentes puntos de control de la masa de agua subterránea Condado

APÉNDICE 2.2 MASAS DE AGUA SUBTERRÁNEA SIN RIESGO

1 ES064MSBT004400010 ARACENA

1.1 INFORMACIÓN SOBRE LA MASA DE AGUA

UBICACIÓN	POBLACIÓN ASENTADA (N° HAB.)	MARCO GEOGRÁFICO (HIDROGRAFÍA)
Se sitúa al norte de la provincia de Huelva, en la Sierra de Aracena y transcurre por los municipios de Almonaster la Real, Santa Ana la Real, Alájar, Linares de la Sierra, Aracena e Higuera de la Sierra (Figura nº1).	9.267	Río principal: Odiel

Tabla nº 1. Información sobre la masa de agua de Aracena

1.2 LOCALIZACIÓN GEOGRÁFICA Y ÁMBITO ADMINISTRATIVO

ÁMBITO ADMINISTRATIVO	LOCALIZACIÓN
Comunidad Autónoma	Andalucía
Distrito	Atlántico
Provincia	Huelva

Tabla nº 2. Localización geográfica de la masa de agua de Aracena

1.2.1 TOPOGRAFÍA Y COORDENADAS DEL CENTROIDE

TOPOGRAFÍA						
Coordenadas del centroide (HUSO 30N)		Geon	netría	Altitud (m.s.n.m.)		
U.T.M. X (m)	U.T.M. Y (m)	Perímetro Superficie (km) (km²)		Máxima	Mínima	
196.311,525	4.192.639,2	84,83	65,04	928	460	

Tabla nº 3. Topografía y coordenadas de la masa de agua Aracena

Figura nº1. Localización de la masa de agua Aracena

1.2.2 REGISTRO DE ZONAS PROTEGIDAS

Código EU zonas protegidas	Nombre Captación	Tipo de captación	Coordenadas UTM X (m)	Coordenadas UTM Y (m)	Código SINAC ¹
ES064ZPROT6150020000002008680	Pozo 1 Las Veredas	Pozo	162.912	4.199.821	8680
ES064ZPROT6150020000002008679	Pozo 2 Las Aldeas	Pozo	164.396	4.200.525	8679
ES064ZPROT6150020000002008683	Pozo Arroyo Estación	Pozo	165.640	4.200.462	8683
ES064ZPROT6150020000001008759	Pozo 1 Jabuguillo	Pozo	190.667	4.196.347	8759
ES064ZPROT6150020000002008760	Pozo 2 Jabuguillo	Pozo	190.636	4.196.367	8760
ES064ZPROT6150020000002018010	Pozo Finca Jardín Valdezufre	Pozo	192.509	4.196.193	18010
ES064ZPROT6150020000002018011	Pozo Baloncesto Valdezufre	Pozo	192.415	4.195.796	18011
ES064ZPROT6150020000002008707	Pozo 2 Santa Ana La Real	Pozo	171.521	4.196.745	8707
ES064ZPROT6150020000002008688	Pozo 1 Alajar	Pozo	176.728	4.197.927	8688
ES064ZPROT6150020000002008689	Pozo 2 Alajar	Pozo	177.756	4.198.526	8689
ES064ZPROT6150020000002008691	Pozo 4 Alajar	Pozo	176.753	4.197.936	8691
ES064ZPROT6150020000002008685	Pozo Las Molares	Pozo	169.749	4.198.327	8685
ES064ZPROT6150020000001008690	Pozo 3 Alajar	Pozo	177.745	4.198.514	8690

¹ Sistema de Información Nacional de Aguas de Consumo (SINAC). Ministerio de Sanidad, Consumo y Bienestar Social.

Tabla nº 4. Zonas protegidas para abastecimiento. Captaciones de aguas subterráneas

Código EU zonas protegidas	Nombre captación	Coordenadas UTM X (m)	Coordenadas UTM Y (m)	Código SINAC
ES064ZPROT6150020000003008692	Manantial La Peña	177.400	4.198.639	8692
ES064ZPROT6150020000003008677	Manantial El Berre	167.464	4.199.011	8677
ES064ZPROT6150020000003008682	Manantial Las Aldeas	165.640	4.200.462	8682
ES064ZPROT6150020000003008720	Manantial del tío Cano	182.099	4.199.285	8720
ES064ZPROT6150020000003008709	Manatial Los Casares	174.088	4.197.449	8709

Tabla nº 5. Zonas protegidas para abastecimiento. Manantiales.

ZONAS PROTEGIDAS DE HÁBITAT O ESPECIES							
Nombre	Figura de protección	Superficie de espacio protegido (km²)					
		Total	Parte incluida	Porcentaje de			
			en la masa	la masa			
Sierra de Aracena	ZFC.	1 967 06	58,93	90,62			
y Picos de Aroche	ZEC	1.867,96	30,33	30,02			
Sierra de Aracena	7504	1.867,96	58,93	90,62			
y Picos de Aroche	ZEPA			30,02			

Tabla nº 6. Zonas de protección de hábitat o especies.

1.2.3 POBLACIÓN ASENTADA

DATOS DEL PADRÓN REFERENTES AL NÚCLEO	POBLACIÓN ASENTADA DE DERECHO
DE:	2019
Alájar	716
Almonaster la Real	108
Aracena	7.465
Higuera de la Sierra	372
Linares de la Sierra	262
Santa Ana la Real	344
TOTAL	9.267

Tabla nº 7. Población asentada sobre la masa de agua subterránea

1.3 CARACTERÍSTICAS INTRÍNSECAS

1.3.1 CARACTERÍSTICAS GEOLÓGICAS E HIDROLÓGICAS GENERALES

Los materiales poco permeables situados bajo el acuífero carbonático de la Sierra de Aracena consisten en rocas metamórficas de la formación La Umbría, a la que se superponen dos niveles acuíferos: el inferior, constituido por unos 400 m de mármoles y calizas de la formación Aracena, y el superior, de tipo multicapa, formado por los mármoles dolomíticos y calizas de la formación Volcanosedimentaria. La suma de todos los niveles carbonáticos intercalados entre las metavolcanitas, de carácter acuitardo, puede llegar a superar los 300 m de espesor. Todo el perímetro del acuífero es cerrado al flujo subterráneo. El límite es de tipo mecánico y está definido por dos importantes fracturas.

La alimentación del sector occidental del acuífero se produce por infiltración directa del agua de lluvia y, en épocas de estiaje acusado, algunos tramos del cauce del río Múrtigas, pueden recargar al acuífero. La topografía de la zona, condicionada por el relieve positivo de la estructura, la inmersión del pliegue, la existencia de distintos

niveles acuíferos en la vertical y el encajamiento del río Múrtigas ocasionan la existencia de numerosos manantiales que surgen en el contacto entre las metavolcanitas y las rocas carbonáticas. El flujo subterráneo tiene componente noroeste en todo el sector acuífero, actuando el río Múrtigas como colector de las descargas, sin embargo, el tramo más meridional drena hacia el sur, hacia el manantial de la Peña de Arias Montano. En el sector central del acuífero, la recarga se produce por infiltración del agua de lluvia y el flujo subterráneo, del sector septentrional, se dirige hacia el norte, hacia el manantial de la Fuente del Castaño, mientras que en la zona meridional el flujo se dirige hacia el sur, hacia el manantial de La Herrería. En el sector oriental del acuífero, el flujo subterráneo se dirige hacia el norte y hacia el oeste, hacia la Fuente del Rey y la zona del Molino del Bombo, respectivamente.

1.3.1.1 ÁMBITO GEOESTRUCTURAL

MARCO GEOLÓGICO			
UNIDADES GEOLÓGICAS DE RANGO MAYOR			
Sierra Morena Occidental			
Zonas	Ossa-Morena		
Unidades tectosedimentarias	Macizo Ibérico o Hespérico		

Tabla nº 8. Unidades geológicas la masa de agua subterránea

1.3.1.2 DESCRIPCIÓN GEOLÓGICA

La Sierra de Aracena está formada por rocas metamórficas, afectadas por un metamorfismo de alta temperatura y baja presión. En esta unidad geológica se diferencian dos sectores, en función del grado de metamorfismo de las rocas, separados por una importante zona de cizalla. En la columna litoestratigráfica de este sector se distinguen cuatro formaciones: La Umbría, Aracena, Volcanosedimentaria y El Cubito.

1.3.1.3 COLUMNA LITOLÓGICA TIPO

ESTRATIGRAFÍA					
SÍNTESIS DE UNIDADES LITOESTRATIGRÁFICAS					
	CUATERNARI	0			
Litología	Extensión de afloramiento (km²)	Potencia media estimada (m)	Edad		
Cuaternario indiferenciado	2,22	-	Cuaternario		
	DOMINIO DE BAJO	GRADO			
Litología	Extensión de afloramiento (km²)	Potencia media estimada (m)	Edad		
Complejo Vulcano sedimentario	13,55	> 1.000	Silúrico inferior		
Formación Aracena	2,60	250-400	Cámbrico inferior		
Formación Umbría	9,66	-	Precámbrico superior		
	DOMINIO DE ALTO	GRADO			
Litología	Extensión de afloramiento (km²)	Potencia media estimada (m)	Edad		
Dominio de Alto Grado	0,16	_	Cámbrico		
Mármoles con diópsido y/o fosforita	5,39	_	Cámbrico		
Anfibolitas	0,62	-	Cámbrico		
DOMINIO OCEÁNICO					

ESTRATIGRAFÍA						
SÍNTE	SÍNTESIS DE UNIDADES LITOESTRATIGRÁFICAS					
	CUATERNARI	0				
Litología	Extensión de afloramiento (km²)	Potencia media estimada (m)	Edad			
Formación Rivera de Limas	0,00027	-	Devónico- Cámbrico			
Formación Pulo de Lobos	0,024	-	Devónico			
Formación Acebuches	0,16	-	Silúrico			
	ROCAS ÍGNEA	S				
Litología	Extensión de afloramiento (km²)	Potencia media estimada (m)	Edad			
Rocas ígneas	7,59	-	-			

Tabla nº 9. Litología de la masa de agua subterránea

1.3.1.4 ESTRUCTURA

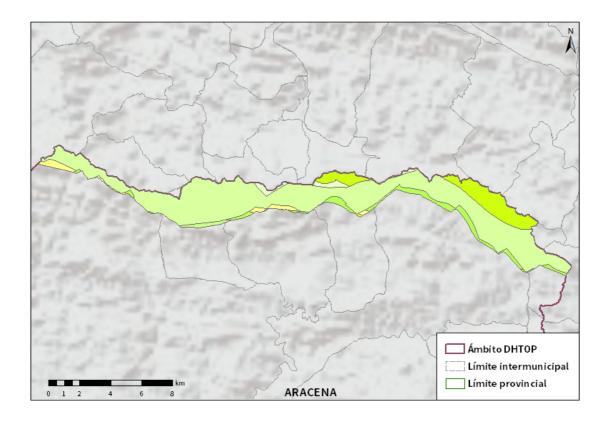


Figura nº2. Mapa de afloramientos litoestratigráficos de la masa de agua subterránea

1.3.1.5 TIPOLOGÍA HIDROLÓGICA GENERAL

DETRÍTICO	CARBONATADO	міхто	MIXTO Y OTROS	ACUÍFEROS LOCALES
		Х		

Tabla nº 10. Tipología de la masa de agua subterránea

1.3.1.6 LÍMITES HIDROLÓGICOS DE LA MASA DE AGUA SUBTERRÁNEA

	ENCUADRE HIDROGEOLÓGICO					
	LÍMITES DE CONTORNO					
Límite	Tipo	Sentido del flujo	Naturaleza			
Norte	Cerrado	Sur	Divisoria Odiel-Guadalquivir			
Sur	Cerrado	Descargas	Litológico			
Este	Abierto	Función de la piezometría	Divisoria Odiel-Guadalquivir			
Oeste	_	_	_			

Tabla nº 11. Límites hidrológicos de la masa de agua subterránea

1.3.1.7 ACUÍFEROS CONSTITUYENTES DE LA MASA DE AGUA SUBTERRÁNEA

ACUÍFEROS CONSTITUYENTES				
DESCRIPCIÓN				
Denominación	Naturaleza	Litología		
Setenil	Carbonatado	Calcarenitas, conglomerados., y arenas		
Ronda-Cañete	Carbonatado	Calizas y dolomías		
El Gastor	Carbonatado	Calizas y dolomías		

Tabla nº 12. Acuíferos de la masa de agua subterránea

1.3.1.8 ESPESOR SATURADO DE LOS ACUÍFEROS CONSTITUYENTES DE LA MASA DE AGUA SUBTERRÁNEA

GEOMETRÍA					
Denominación	Superficie aflorante (km²)	Potencia estimada (m)	Disposición		
Formación Aracena	2,59	> 1.000	Tabular		
Mármoles Formación Vulcano sedimentaria	13,55	250-400	Tabular		
Mármoles Dominio Alto Grado	5,39	-	Tabular		

Tabla nº 13. Espesor saturado de los acuíferos de la masa de agua subterránea

1.3.1.9 CARACTERÍSTICAS HIDRÁULICAS

FUNCIONAMIENTO						
Denominación	Porosidad	Permeabilidad	Transmisividad (m²/día)	Almacenamiento (%)		
Formación Aracena	Por fracturación y kasrtificación	-	-	-		
Mármoles Formación Vulcano sedimentaria	Por fracturación y kasrtificación	-	-	-		
Mármoles Dominio Alto Grado	Por fracturación y kasrtificación	-	-	-		

Tabla nº 14. Características hidráulicas de la masa de agua subterránea

1.3.2 ZONA NO SATURADA

1.3.2.1 POTENCIA NO SATURADA

	ZONA NO SATURADA						
	ESPESOR						
Fecha	Valores (m.s.n.m.)			Distrib	ución espacial		
reciia	Máximo	Medio	Mínimo	Intervalo (m)	Porcentaje de masa		
		-		-	-		
				-	-		
-	-		-		-	-	-
				-	-		

Tabla nº 15. Potencia de la zona no saturada de la masa de agua subterránea

1.3.2.2 EDAFOLOGÍA

SUELOS					
Tipología	Espesor medio (cm)	Naturaleza	Extensión (%)		
Regosoles	-	-	17		
Cambisoles	-	-	47		
Luvisol	-	-	35		

Tabla nº 16. Edafología de la masa de agua subterránea

1.3.2.3 VULNERABILIDAD A LA CONTAMINACIÓN

VULNERABILIDAD A LA CONTAMINACIÓN						
MÉTODO DRASTIC						
Clase	Rango	Superficie (km²)	Extensión (%)			
Muy baja	1-2	0,92	1,45			
Ваја	3-4	51,03	80,16			
Moderada	5-6	10,63	16,71			
Alta	7-8	1,05	1,66			
Muy baja	1-2	0,02	0,03			

Tabla nº 17. Vulnerabilidad de la masa de agua subterránea

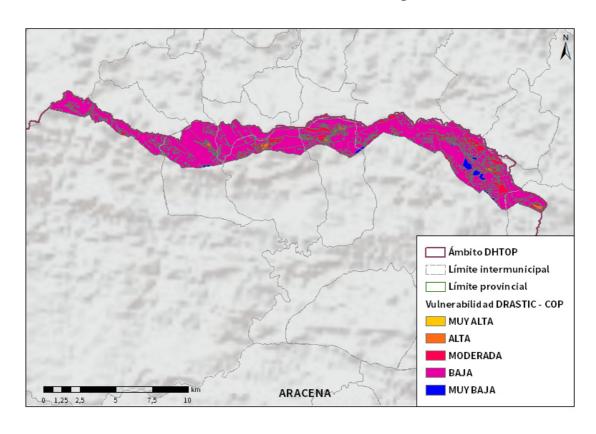


Figura nº3. Mapa de Vulnerabilidad de la masa de agua subterránea

1.3.3 PIEZOMETRÍA Y VARIACIÓN DEL ALMACENAMIENTO

1.3.3.1 PUNTOS DE CONTROL Y CLASIFICACIÓN PIEZOMÉTRICA

PUNTOS DE CONTROL PIEZOMETRICO						
Código punto	Cota (m)	Coordenadas UTM (m) X Y		Clasificación	Código masa	
-	-	-	-	-	-	

Tabla nº 18. Puntos de control piezométrico de la masa de agua subterránea y estado.

1.3.3.2 MAPA DE PERMEABILIDADES

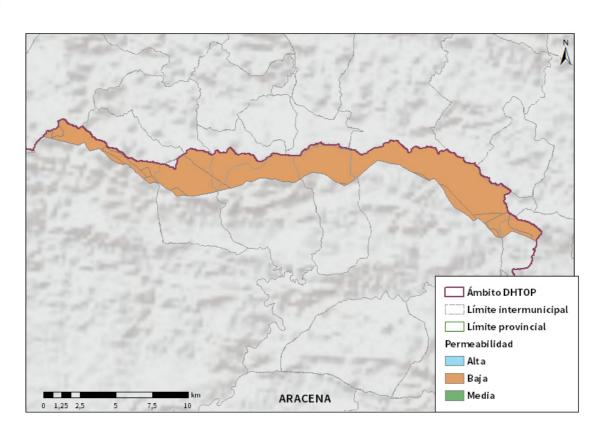


Figura nº4. Mapa de permeabilidades de Andalucía (2006)

1.3.4 CONEXIÓN CON CURSOS DE AGUA Y ZONAS HÚMEDAS

1.3.4.1 DEPENDENCIA DE ECOSISTEMAS ACUÁTICOS

HUMEDALES	DEPENDENCIA DE TRAMOS FLUVIALES			
HUMEDALES	EN LA MASA	FUERA DE LA MASA		
NO	SI	SI		

Tabla nº 19. Dependencia con ecosistemas acuáticos en la masa de agua subterránea

TRAMOS FLUVIALES DEPENDIENTES						
Nombre de la masa	Categoría	Coeficiente de reparto				
Río Odiel I	Río	0,35				
Rivera de Olivarga I	Río	0,08				
Rivera de escalada I	Río	0,08				
Rivera de Santa Eulalia	Río	0,49				

Tabla nº 20. Tramos fluviales dependientes de la masa de agua

1.3.4.2 DESCRIPCIÓN Y OBSERVACIONES

MASAS DE AGUA SUPERFICIALES UBICADAS SOBRE LA MASA SUBTERRÁNEA						
Nombre de la masa	Categoría	Long. Total (km)	Long. Incluida en la masa (km)			
Río Odiel I	Río	32,76	1,61			

Tabla nº 21. Masas de agua en la superficie de la masa de agua subterránea

1.3.5 FLUJOS

1.3.5.1 RECARGA

	Datos en hm³/año							
Acuífero	Infiltración por lluvia	Retornos procedentes de riego	Otras entradas	Recurso disponible				
Aracena	3,8	0	0	3				

Tabla nº 22. Recarga de la masa de agua subterránea

1.3.5.2 DESCARGA

La descarga se produce de forma natural hacia acuíferos contiguos mediante descargas laterales y 5 manantiales.

1.3.5.3 RECARGA ARTIFICIAL

No se realiza ningún tipo de recarga artificial en esta masa de agua.

1.4 PRESIONES

1.4.1 EXPLOTACIÓN DE LAS AGUAS SUBTERRÁNEAS

1.4.1.1 EXTRACCIONES A PARTIR DEL ANÁLISIS DE USOS Y DEMANDAS

VOLUMEN ANUAL EXTRAÍDO						
Abastecimiento (hm³)	Agrícola (hm³)	Industrial (hm³)	Golf (hm³)	Ganadería (hm³)	Reserva (hm³)	TOTAL (hm³)
0,83	0	0	0	0	0	0,83

Tabla nº 23. Extracciones en la masa de agua subterránea

1.4.2 OCUPACIÓN GENERAL DEL SUELO

1.4.2.1 DISTRIBUCIÓN SEGÚN EL SISTEMA DE INFORMACIÓN GEOGRÁFICA DE PARCELAS AGRÍCOLAS DE ANDALUCÍA (2019)

TIPO	SUPERFICIE (ha)	SUPERFICIE (%)
Pasto Arbolado	2.076,62	31,93
Forestal	1.264,96	19,45
Olivar	714,65	10,99
Frutal	682,83	10,50
Pasto Arbustivo	579,18	8,91
Pastizal	389,83	5,99
Zona Urbana	249,42	3,84
Tierra Arable	220,80	3,40
Viales	143,66	2,21
Improductivo	94,71	1,46
Huerta	49,93	0,77
Corrientes y superficies de agua	23,84	0,37
Frutal de Cáscara	4,96	0,08
Edificaciones	2,73	0,04

TIPO	SUPERFICIE (ha)	SUPERFICIE (%)
Viñedo	2,61	0,04
Olivar-Viñedo	1,60	0,02
Olivar-Frutal	1,16	0,02
Frutal de Cáscara-Viñedo	0,12	0
Frutal-Viñedo	0,08	0
Invernaderos	0,01	0
Elemento del Paisaje	0,01	0

Nota: Los valores nulos de la columna de superficie son valores muy bajos casi nulos. La suma de la superficie en porcentaje no es 100 dada la falta de estos valores nulos

Tabla nº 24. Distribución de usos del suelo según el Sistema de Información Geográfica de Parcelas Agrícolas de Andalucía (SIGPAC 2019)

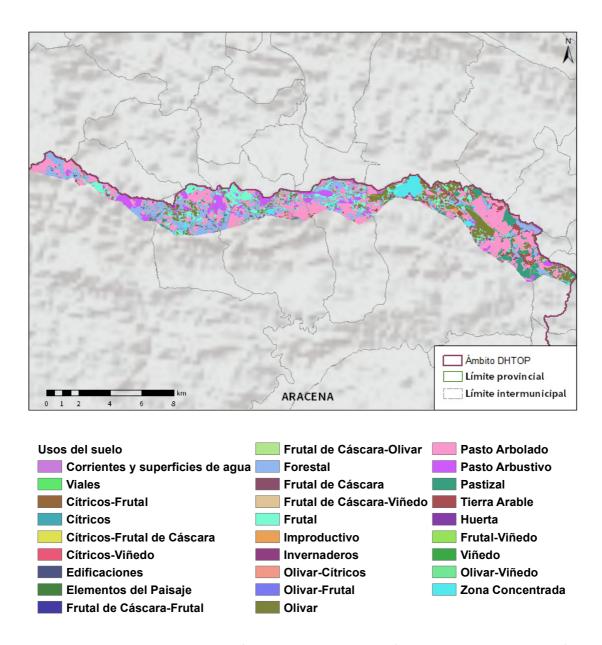


Figura nº5. Mapa de distribución de usos del suelo según el Sistema de Información Geográfica de Parcelas Agrícolas de Andalucía (SIGPAC 2019)

1.4.3 PRESIÓN PUNTUAL

		Valo	oración de la pres			
	Descripción	(n° de en	Densida			
Tipo	de fuente puntual	Potencialment e muy importante	Potencialment e Importante	Potencialment e no importante	d	Valoración
1.1	Aguas residuales urbanas	>1	0,2 - 1	< 0,2	0,15	No importante
1.2	Aliviaderos	> 1	0,2 - 1	< 0,2	-	Sin presión
1.3	Plantas IED	> 1	0,2 - 1	< 0,2	-	Sin presión
1.4	Plantas no IED	>1	0,2 - 1	< 0,2	-	Sin presión
1.5	Suelos contaminado s / Zonas industriales abandonada s	>1	0,2 - 1	< 0,2	-	Sin presión
1.6	Zonas para eliminación de residuos	> 0,5	0,1 - 0,5	< 0,1	-	Sin presión
1.7	Aguas de minería	>1	0,2 - 1	< 0,2	-	Sin presión
1.8	Acuicultura	> 1	0,2 - 1	< 0,2	-	Sin presión
1.9	Otras	> 2	0,5 - 2	< 0,5	0,15	No importante

Tabla nº 25. Presiones puntuales en la masa de agua subterránea

1.4.4 PRESIÓN DIFUSA

	Valoración de la presión					
	Descripción	(% d e	Densida			
Tipo	de fuente difusa	Potencialment e muy importante	Potencialment e Importante	Potencialment e no importante	d	Valoración
2.1	Escorrentía urbana / alcantarillad o	> 10 %	2 - 10 %	< 2 %	2,86%	Importante
2.2	Agricultura	> 30 %	10 – 30 %	< 10 %	20,2%	Importante
2.3	Forestal	> 10 %	2 – 10 %	< 2 %	-	Sin presión
2.4	Transporte	> 2 %	1 – 2 %	< 1 %	1,18%	Importante
2.5	Suelos contaminado s / Zonas industriales abandonada s	> 2 %	1 – 2 %	< 1 %	-	Sin presión
2.6	Vertidos no conectados a la red de saneamiento	> 2 %	1 – 2 %	< 1 %	-	Sin presión
2.7	Deposición atmosférica	> 2 %	1 – 2 %	<1%	-	Sin presión
2.8	Minería	> 2 %	1 – 2 %	< 1 %	0,017%	No importante
2.9	Acuicultura	> 2 %	1 – 2 %	< 1 %	-	Sin presión

	Descrip		N(t/año)					
Tipo	ción de fuente difusa	Muy importa nte	Importante	Moderadam ente importante	Moder ada	No importante	Densidad	Valoración
2.10	Otras (ganad ería)	>150	75-150	50-75	25-50	<25	35,31	Moderada

Tabla nº 26. Presiones difusas de la masa de agua subterránea

1.5 ESTADO E IMPACTOS

1.5.1 EVALUACIÓN DEL ESTADO CUANTITATIVO

VOLUMEN EXTRAÍDO (hm³/año)	RECURSOS DISPONIBLES (hm³/año)	ÍNDICE DE EXPLOTACIÓN ESTIMADO (%)	ESTADO CUANTITATIVO
0,83	3	28	Bueno

Tabla nº 27. Estado cuantitativo de la masa de agua subterránea

Un IE igual o superior a 80 %, es indicativo de que las extracciones de agua suponen una presión importante para la masa de agua. Por encima de este valor se considera que la masa de agua está en mal estado cuantitativo. En concreto en esta masa de agua se observa un IE del 28% lo que indica que los recursos extraídos son considerablemente menores a la capacidad de recarga del acuífero lo que implica un bajo riesgo de sobreexplotación.

1.5.2 EVALUACIÓN DEL ESTADO QUÍMICO

1.5.2.1 NORMAS DE CALIDAD Y VALORES UMBRAL

PARÁMETROS	NORMAS DE CALIDAD		
Conductividad (in situ) (20°C)	2.500 μs/cm		
Cloruros	250 mg/l		
Nitratos	50 mg/l		
Arsénico	10 μg/l		
Fluoruros	1,5 mg/l		

Tabla nº 28. Valores umbrales para contaminantes

1.5.2.2 RED DE CONTROL DE DIAGNÓSTICO

CÓDIGO	COORDENADA UTM X (m)	COORDENDA UTM Y (m)	
AA00010027	190.677	4.196.346	
AA00010029	173.574	4.197.938	
AA00010030	177.864	4.198.638	
AA00010031	182.216	4.199.311	
AA00010038	167.026	4.198.539	
AA00010114	171.496	4.196.777	
AA00010115	165.658	4.200.471	
AA00010116	173.481	4.197.799	
AA0TOP5056	193.593	4.198.774	
AA00010035	190.984	4.186.351	
AA00010037	170.492	4.178.679	
AA00010039	173.183	4.190.977	

Tabla nº 29. Puntos de la red de control de calidad en la masa de agua subterránea

1.5.2.3 ESTADO QUÍMICO

Se ha comprobado que las sustancias activas de los plaguicidas, incluidos los metabolitos y los productos de degradación y reacción que sean pertinentes no superen el $0,1\,\mu\text{g/l}$ (referido a cada sustancia) y el $0,5\,\mu\text{g/l}$ (referido a la suma de todos los plaguicidas detectados y cuantificados en el procedimiento de seguimiento año 2018).

Los resultados obtenidos en cada punto de control (medias anuales 2019) han sido los siguientes (Tabla nº 30):

PLAN HIDROLÓGICO 2021-27 – APÉNDICE 2

PUNTO DE	CONDUCTIVIDAD (IN SITU)(20°C) (μs/cm)		Cl (mg/l)		NO (mg/l)		As (μg/l)		F (mg/l)		Plaguicidas total (μg/l)	ESTADO
CONTROL	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	Máximo	Media anual	QUÍMICO
AA00010027	606	615	10,35	12,3	9,7	12,2	0,89	0,91	0,1	0,1	-	Bueno
AA00010030	508	525	6,28	7,9	0,9	0,9	0,24	0,24	0,09	0,09	-	Bueno
AA00010031	501	511	6,6	9,6	0,9	0,9	0,34	0,35	0,09	0,09	-	Bueno
AA00010035	354	381	6,72	8,4	2,81	3,6	3,62	4	0,12	0,15	0,002	Bueno
AA00010037	482	491	22,15	25,2	18,3	24,7	0,52	0,54	0,12	0,13	0,002	Bueno
AA00010039	369	401	13,15	14,5	0,9	0,9	18,8	26,5	0,09	0,09	0,002	Bueno
AA0TOP5056	595	607	7,9	9,3	5,7	6,8	0,30	0,36	0,09	0,09	-	Bueno
AA00010038	403	426	8,85	9,6	1,03	1,16	0,59	0,68	0,09	0,09	-	Bueno
AA00010029	-	-	-	-	-	-	-	-	-	-	-	-
AA00010114	-	-	-	-	-	-	-	-	-	-	-	-
AA00010115	-	-	-	-	-	-	-	-	-	-	-	-
AA00010116	-	-	-	-	-	-	-	-	-	-	-	-
Media	49	1	8.	,38	1,	,92	0,	,56	0	,09	0,002	
Máximo	61	5	2.	5,2	2	4,7	2	6,5	0	,15	0,002	

Nota: (Cl) cloruros; (NO) nitratos; (As) Arsénico; (F) Fluoruros

Tabla nº 30. Red calidad y diagnóstico

1.5.3 ESTADO GLOBAL E IDENTIFICACIÓN DE IMPACTOS

ESTADO	ESTADO	ESTADO
CUANTITATIVO	QUÍMICO	FINAL
Bueno	Bueno	

Tabla nº 31. Evaluación del estado de la masa de agua subterránea

TIPO	DEFINICIÓN	DESCRIPCIÓN	PRESENCIA DE IMPACTO
ACID	Acidificación	Variaciones del pH. Sale del rango del bueno.	
СНЕМ	Contaminación química	Masa de agua en mal estado químico.	
ECOS	Afección a ecosistemas terrestres dependientes del agua subterránea	Diagnóstico reporting Directiva hábitats que evidencie este impacto.	
ННҮС	Alteraciones de hábitat por cambios hidrológicos	Diagnóstico hidromorfológico de la masa de agua que evidencia impacto.	
НМОС	Alteraciones de hábitat por cambios morfológicos incluida la conectividad	Diagnóstico hidromorfológico de la masa de agua que evidencie impacto.	
INTR	Alteraciones de la dirección del flujo por intrusión salina	Concentración de cloruros/conductividad. Test de intrusión.	
LITT	Acumulación de basura reconocida en las Estrategias Marinas	Diagnóstico seguimiento Estrategias Marinas	
LOWT	Descenso piezométrico por extracción	Masa de agua en mal estado cuantitativo	
MICR	Contaminación microbiológica	Incumplimiento Directivas baño y agua potable	
NUTR	Contaminación por nutrientes	Diagnóstico N y P en la masa de agua, salen del rango del buen estado.	
ORGA	Contaminación orgánica	Condiciones de oxigenación, salen del rango del buen estado	
OTHE	Otro tipo de impacto significativo	Describir según el caso.	

PLAN HIDROLÓGICO 2021-27 – APÉNDICE 2

TIPO	DEFINICIÓN	DESCRIPCIÓN	PRESENCIA DE IMPACTO
QUAL	Disminución de la calidad del agua superficial asociada por impacto químico o cuantitativo	Diagnóstico del estado de la masa de agua superficial afectada	
SALI	Intrusión o contaminación salina	Concentración de cloruros/conductividad.	
TEMP	Elevación de la temperatura	Medición de la temperatura. No más de 3 °C en la zona de mezcla	
UNKN	Desconocido	Describir según el caso.	

Tabla nº 32. Impactos identificados en la masa de agua

