Safety Leadership & Safety Climate: Improving Safety Performance

Dov Zohar Technion - Israel Institute of Technology dzohar@tx.technion.ac.il

Spain talk to workers, Grenada 2015

1

A tendency for workarounds (at-risk behavior) under routine work

- BBS observations in 42 high-risk manufacturing plants (413 workgroups): only 19% of daily discussions and 66% of observable operations were safety-oriented by the companies' own rules → 44% at-risk behaviors (Zohar & Luria, 2005)
- Failure to use protective gear <u>provided</u> at work accounts for 30% of lost workdays (wно, 2010)
- Strong tendency for workarounds (at-risk behavior) under routine conditions (managers & workers alike)

Where is it coming from & how can it be reversed?

Where is the tendency for workarounds coming from?

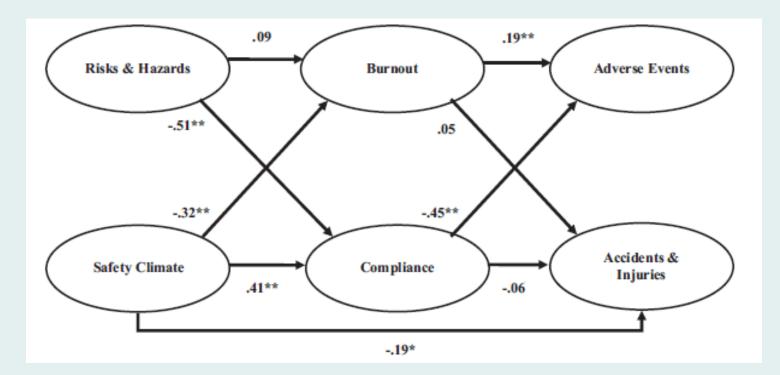
Background information

- Most jobs can be <u>successfully performed at different</u> <u>safety levels</u>: Safety constitutes an independent, yet <u>not-necessary</u> performance dimension (i.e. an add-on). *Example: Drive more or less safely from A to B without accident*
- Safety entails investment of non-productive individual effort + org. resources, coupled with low injury chances
- · Affects workers & managers alike: "won't happen to me"

Examples:

(a) Unit stoppage for preventive maintenance → extra production costs
 (b) Invest \$ in machine guards /rusty pipe replacement →
 more costs
 (c) Wait until pressure relief valve reaches required
 level → fall behind

Workarounds: rational choice under ordinary (if risky) work: maximize gains at no immediate costs due to low injury changes


Safety Climate as Best Predictor Safety climate as measurable proxy of safety culture

Safety culture enhances safety engineering by influencing safety compliance (counteracting the tendency for workarounds)

Safety climate → safety compliance & injuries Meta-analysis of 202 scientific studies (JAP, 2011)

<u>Safety climate</u> is a strong & reproducible <u>behavior-based</u> indicator: r**c**=-0.45 (unsafe behavior); r**c**=-0.24 (injury)

<u>Risks & hazards</u> (*engineering-based indicator*) relationships are weaker: r**c**=0.12 (unsafe behavior) and r**c**=0.13 (injury)

What makes safety climate the best predictor? Affects workers & managers behavior alike

- Workers & unit managers safety climate perceptions appraise org. reward structure, affecting choices of safe /unsafe behavior → <u>counters</u> the choice of workarounds
 - Answer questions such as: (1) Is meeting deadlines more important than complying to safety rules? (2) Is it better for me to cut (safety) corners in order to work faster/cut costs?

•

- Whenever safety goals are (financially/socially) rewarded less than competing goals, a rational choice is at-risk behavior as long as the chances for injury remain low
- When everyone agrees about org. rewards for safety behavior, safety climate emerges (high vs. low scores), resulting in worker-level & management-level climates

Measuring safety climate

Scale items refer to observable indicators of safety priority: Priority \rightarrow Expected rewards

Employees discriminate between safety commitment & safety rewarding by senior vs. supervisory leaders

Worker-level climate scores are related (but not identical) to management-level climate scores

Scale items (Zohar & Luria, 2005):

My supervisor-

- Refuses to ignore safety rules when work falls behind schedule
- Is strict about working safely when we are tired or stressed Senior management -
- Quickly corrects any safety hazard (even if it's costly)
- Considers safety when setting production speed and schedules

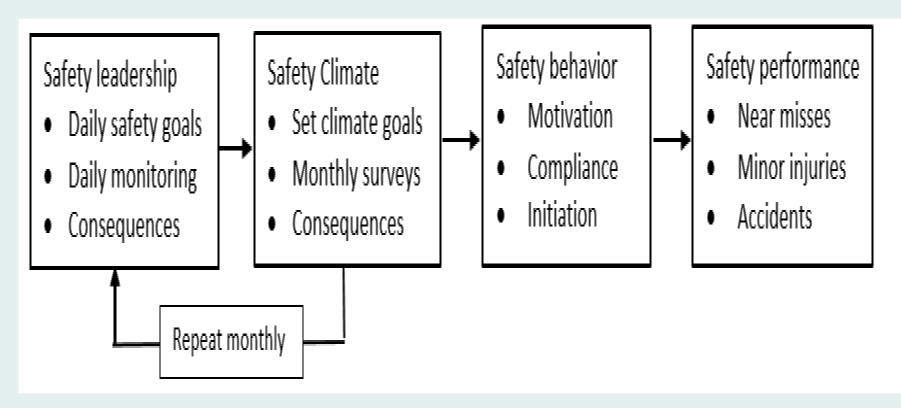
How can safety climate be improved? Intervention strategies

Strategy 1: Safety leadership training Use leadership as leverage for safety climate change

- Effective supervisors do 2 things: frequent monitoring + offering timely consequences (rewards/criticisms)
- Goal setting boosts the effect of such acts: set specific & observable goals & offer incentives by goal progress
- Such skills can be trained in a half-day workshop: formal talks + (safety) scenario-based practice
- Top incentives at work: Financial (23%) = Social (21%);
 Social → predictive recognition + immediate feedback
- Discipline alone is <u>least</u> effective \rightarrow org. mis-behavior

Safety goal examples:

(a) Use electrical isolated gloves; (b) Barricade a lifting area

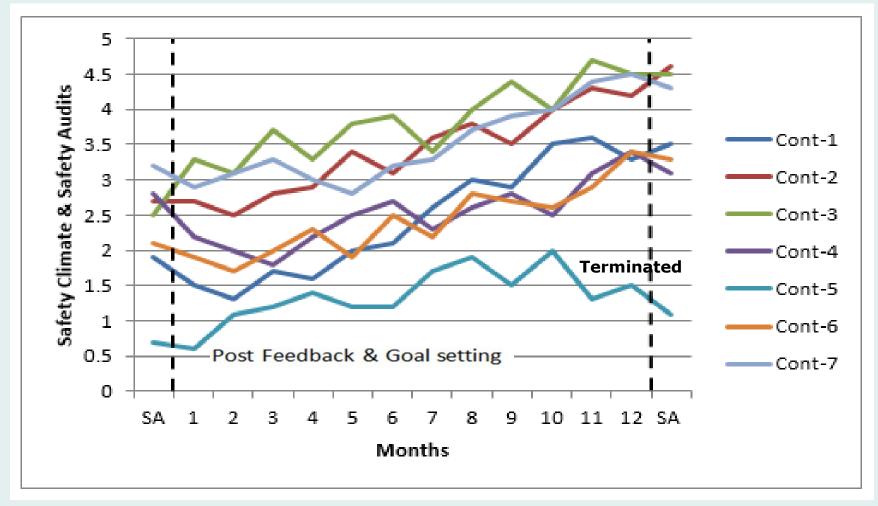

Safety leadership training Half-day workshop

Use formal talks & scenarios combining generic with more specific safety rules during workshop to achieve the following objectives:

- How to set daily (specific & observable) safety goals for performing today's work assignments (do's and don'ts)
- 2. How to schedule daily walk rounds to observe worker behavior & closeness to safety goals (scheduling app)
- 3. How to offer positive/negative feedback based on observed behavior + on-the-spot coaching for safety violations soon after completing each walk round

Strategy 1 duration: Workshops + before/after safety obs.

Safety leadership → Safety climate Combine safety leadership & safety climate change



Strategy 2: Repeated climate surveys & goal setting Development of brief safety climate scales

- Use full-length climate scale to establish base-line score & analyze its data to develop a brief 10-item scale
- 2. Use brief scale for monthly data collection & managerial feedback, paired with setting of unit-level climate goals
- 3. Web-based data collection, using random & temporally separated employee sampling for each unit (>20%)
- 4. Monthly feedback (frontal or remote), accompanied by goal setting & rewarding goal progress <u>or</u> by on-line training/guides for climate improvement in poor units

Strategy 2 duration: up to 12 months (HSE mgnt. decision)

AP chemicals: Monitoring sub-contractor safety climate Brief SC scales at monthly intervals (5-point scale) Goal setting: 10% quarterly increase; Annual rewarding: 10% bonus

Strategy 3: Increase daily safety messages Supervisor-worker conversations

- Given that most org. processes are discourse (speech) driven, climate perceptions often depend on safety messages embedded in daily work-related exchanges
- Challenge: Safety messages are weak & transient, *e.g.* what has been said <u>vs</u>. what has been left out; text (explicit) <u>vs</u>. sub-text (implicit); formal <u>vs</u>. informal messages

Examples:

•

•

"Take a break if you're tired" (Safety)

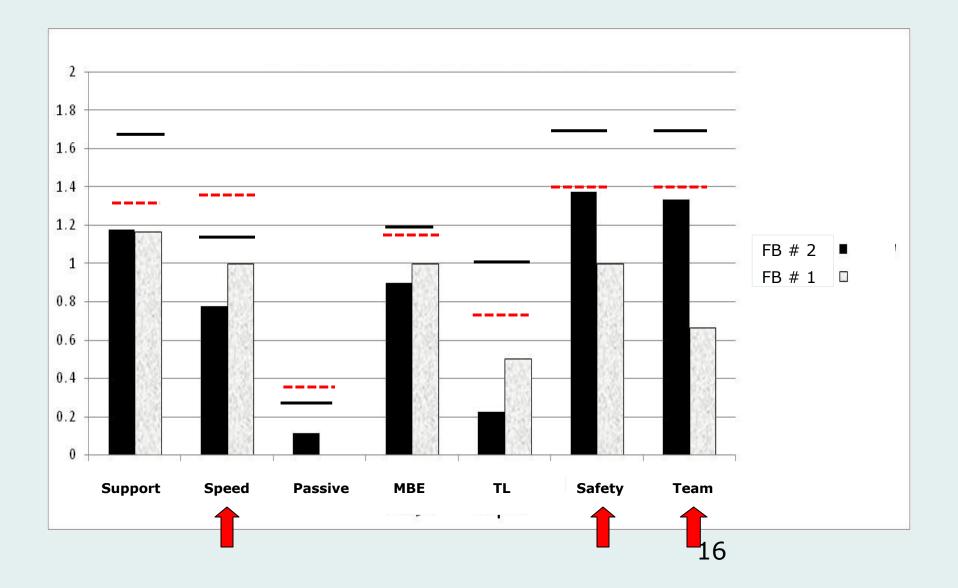
"This job must be completed on time" (Speed)

"Can you tell Ben & Al about it tomorrow morning?" (Team)

Climate intervention project

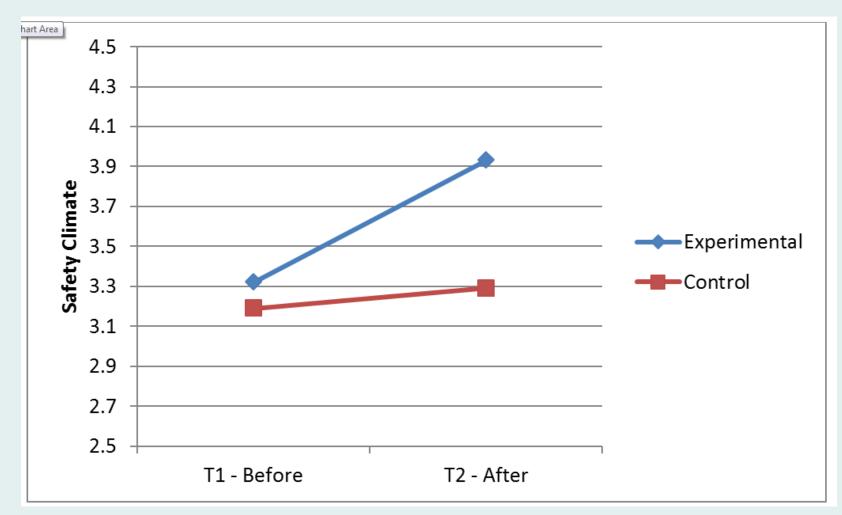
Midsize heavy manufacturing plant (364 workers) Zohar & Polachek, JAP, 2014

Methodology


•

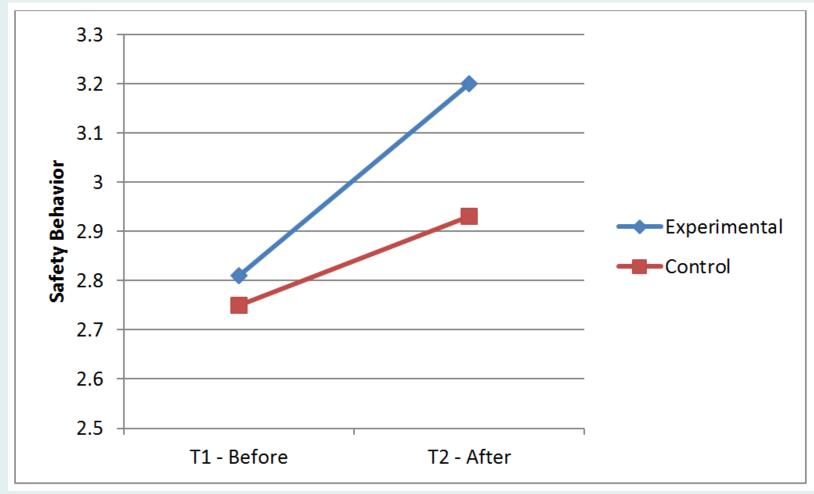
•

- Web-based/mobile apps to randomly select workers & send them brief checklist to spot supervisory safety vs. speed messages on last conversation (5 min)
- Use 7-9 exchanges to derive individual FB data per supervisor; Offer frontal/remote FB sessions
- Measure safety climate & safety behavior 2 months before & after project: Compare Exp & Control groups


Strategy 3 duration: up to 6 monthly FB sessions + before/after safety obs. (HSE management decision)

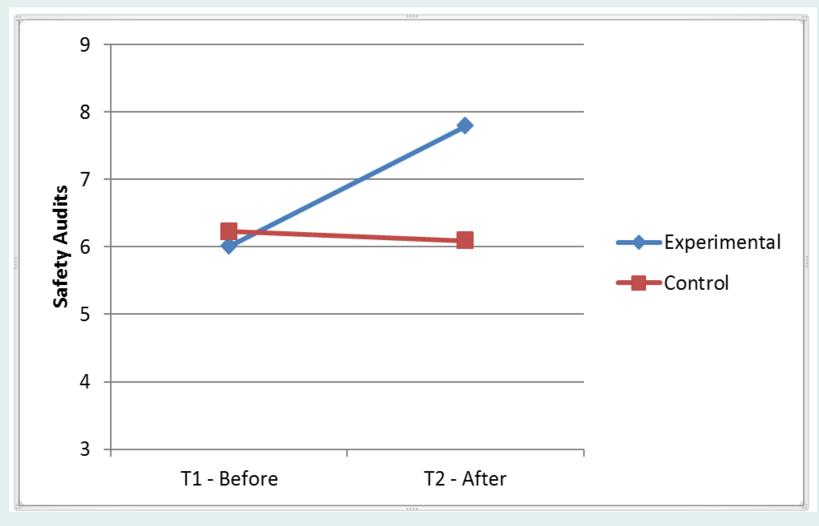
Communicated messages during daily conversations Message types + Individual goals () + Org means ()

Effect of intervention on safety climate

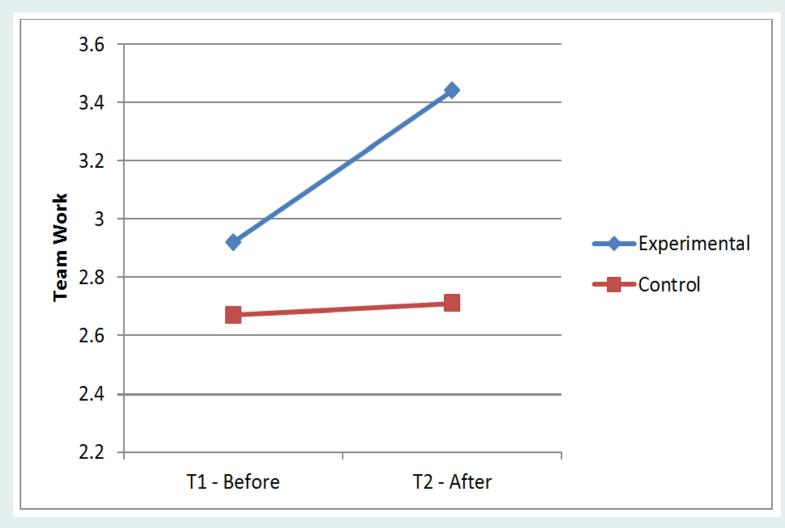

8 weeks before & after intervention

Note: 14 Experimental & 14 Control workgroups

Effect of intervention on safety behavior


Scale: Griffin & Neal (2000)

Note: Contrary to expectations, resulting from project methodology


Effect of intervention on safety audits

Use 2 double-blinded safety experts

Effect of intervention on team work

Scale: Anderson & West (1998)

Conclusions

- Safety climate as strongest factor affecting safety behavior can be used to improve corporate safety
- Intervention strategy: SC can be improved using: (a) repeated surveys + goal setting + FB/rewarding;
 (b) safety leadership practices (daily verbal messages or walk rounds) as leverages for change
- Cost-effectiveness: Safety interventions must be cost effective because of policy-practice de-coupling (safety increases production costs)
- My consulting mode: mentor corporate HSE managers rather than keep my expert knowledge to myself

Thank you dzohar@tx.technion.ac.il

.